Metamath Proof Explorer


Theorem ordpss

Description: ordelpss with an antecedent removed. (Contributed by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion ordpss OrdBABAB

Proof

Step Hyp Ref Expression
1 ordelord OrdBABOrdA
2 1 ex OrdBABOrdA
3 2 ancrd OrdBABOrdAAB
4 ordelpss OrdAOrdBABAB
5 4 ancoms OrdBOrdAABAB
6 5 biimpd OrdBOrdAABAB
7 6 expimpd OrdBOrdAABAB
8 3 7 syld OrdBABAB