Metamath Proof Explorer


Theorem ovn0dmfun

Description: If a class operation value for two operands is not the empty set, then the operands are contained in the domain of the class, and the class restricted to the operands is a function, analogous to fvfundmfvn0 . (Contributed by AV, 27-Jan-2020)

Ref Expression
Assertion ovn0dmfun
|- ( ( A F B ) =/= (/) -> ( <. A , B >. e. dom F /\ Fun ( F |` { <. A , B >. } ) ) )

Proof

Step Hyp Ref Expression
1 df-ov
 |-  ( A F B ) = ( F ` <. A , B >. )
2 1 neeq1i
 |-  ( ( A F B ) =/= (/) <-> ( F ` <. A , B >. ) =/= (/) )
3 fvfundmfvn0
 |-  ( ( F ` <. A , B >. ) =/= (/) -> ( <. A , B >. e. dom F /\ Fun ( F |` { <. A , B >. } ) ) )
4 2 3 sylbi
 |-  ( ( A F B ) =/= (/) -> ( <. A , B >. e. dom F /\ Fun ( F |` { <. A , B >. } ) ) )