Metamath Proof Explorer


Theorem xpsnopab

Description: A Cartesian product with a singleton expressed as ordered-pair class abstraction. (Contributed by AV, 27-Jan-2020)

Ref Expression
Assertion xpsnopab
|- ( { X } X. C ) = { <. a , b >. | ( a = X /\ b e. C ) }

Proof

Step Hyp Ref Expression
1 df-xp
 |-  ( { X } X. C ) = { <. a , b >. | ( a e. { X } /\ b e. C ) }
2 velsn
 |-  ( a e. { X } <-> a = X )
3 2 anbi1i
 |-  ( ( a e. { X } /\ b e. C ) <-> ( a = X /\ b e. C ) )
4 3 opabbii
 |-  { <. a , b >. | ( a e. { X } /\ b e. C ) } = { <. a , b >. | ( a = X /\ b e. C ) }
5 1 4 eqtri
 |-  ( { X } X. C ) = { <. a , b >. | ( a = X /\ b e. C ) }