Metamath Proof Explorer


Theorem xpsnopab

Description: A Cartesian product with a singleton expressed as ordered-pair class abstraction. (Contributed by AV, 27-Jan-2020)

Ref Expression
Assertion xpsnopab ( { 𝑋 } × 𝐶 ) = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎 = 𝑋𝑏𝐶 ) }

Proof

Step Hyp Ref Expression
1 df-xp ( { 𝑋 } × 𝐶 ) = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎 ∈ { 𝑋 } ∧ 𝑏𝐶 ) }
2 velsn ( 𝑎 ∈ { 𝑋 } ↔ 𝑎 = 𝑋 )
3 2 anbi1i ( ( 𝑎 ∈ { 𝑋 } ∧ 𝑏𝐶 ) ↔ ( 𝑎 = 𝑋𝑏𝐶 ) )
4 3 opabbii { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎 ∈ { 𝑋 } ∧ 𝑏𝐶 ) } = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎 = 𝑋𝑏𝐶 ) }
5 1 4 eqtri ( { 𝑋 } × 𝐶 ) = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎 = 𝑋𝑏𝐶 ) }