Description: A Cartesian product expressed as indexed union of ordered-pair class abstractions. (Contributed by AV, 27-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpiun | ⊢ ( 𝐵 × 𝐶 ) = ∪ 𝑥 ∈ 𝐵 { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 = 𝑥 ∧ 𝑏 ∈ 𝐶 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsnopab | ⊢ ( { 𝑥 } × 𝐶 ) = { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 = 𝑥 ∧ 𝑏 ∈ 𝐶 ) } | |
| 2 | 1 | eqcomi | ⊢ { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 = 𝑥 ∧ 𝑏 ∈ 𝐶 ) } = ( { 𝑥 } × 𝐶 ) |
| 3 | 2 | a1i | ⊢ ( 𝑥 ∈ 𝐵 → { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 = 𝑥 ∧ 𝑏 ∈ 𝐶 ) } = ( { 𝑥 } × 𝐶 ) ) |
| 4 | 3 | iuneq2i | ⊢ ∪ 𝑥 ∈ 𝐵 { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 = 𝑥 ∧ 𝑏 ∈ 𝐶 ) } = ∪ 𝑥 ∈ 𝐵 ( { 𝑥 } × 𝐶 ) |
| 5 | iunxpconst | ⊢ ∪ 𝑥 ∈ 𝐵 ( { 𝑥 } × 𝐶 ) = ( 𝐵 × 𝐶 ) | |
| 6 | 4 5 | eqtr2i | ⊢ ( 𝐵 × 𝐶 ) = ∪ 𝑥 ∈ 𝐵 { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 = 𝑥 ∧ 𝑏 ∈ 𝐶 ) } |