Metamath Proof Explorer


Theorem xpiun

Description: A Cartesian product expressed as indexed union of ordered-pair class abstractions. (Contributed by AV, 27-Jan-2020)

Ref Expression
Assertion xpiun ( 𝐵 × 𝐶 ) = 𝑥𝐵 { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎 = 𝑥𝑏𝐶 ) }

Proof

Step Hyp Ref Expression
1 xpsnopab ( { 𝑥 } × 𝐶 ) = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎 = 𝑥𝑏𝐶 ) }
2 1 eqcomi { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎 = 𝑥𝑏𝐶 ) } = ( { 𝑥 } × 𝐶 )
3 2 a1i ( 𝑥𝐵 → { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎 = 𝑥𝑏𝐶 ) } = ( { 𝑥 } × 𝐶 ) )
4 3 iuneq2i 𝑥𝐵 { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎 = 𝑥𝑏𝐶 ) } = 𝑥𝐵 ( { 𝑥 } × 𝐶 )
5 iunxpconst 𝑥𝐵 ( { 𝑥 } × 𝐶 ) = ( 𝐵 × 𝐶 )
6 4 5 eqtr2i ( 𝐵 × 𝐶 ) = 𝑥𝐵 { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎 = 𝑥𝑏𝐶 ) }