Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝑝 = 〈 𝑎 , 𝑏 〉 → ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 〈 𝑎 , 𝑏 〉 ) ) |
2 |
|
df-ov |
⊢ ( 𝑎 𝐹 𝑏 ) = ( 𝐹 ‘ 〈 𝑎 , 𝑏 〉 ) |
3 |
1 2
|
eqtr4di |
⊢ ( 𝑝 = 〈 𝑎 , 𝑏 〉 → ( 𝐹 ‘ 𝑝 ) = ( 𝑎 𝐹 𝑏 ) ) |
4 |
3
|
neeq1d |
⊢ ( 𝑝 = 〈 𝑎 , 𝑏 〉 → ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ↔ ( 𝑎 𝐹 𝑏 ) ≠ ∅ ) ) |
5 |
4
|
ralxp |
⊢ ( ∀ 𝑝 ∈ ( 𝐷 × 𝐸 ) ( 𝐹 ‘ 𝑝 ) ≠ ∅ ↔ ∀ 𝑎 ∈ 𝐷 ∀ 𝑏 ∈ 𝐸 ( 𝑎 𝐹 𝑏 ) ≠ ∅ ) |
6 |
|
fvn0ssdmfun |
⊢ ( ∀ 𝑝 ∈ ( 𝐷 × 𝐸 ) ( 𝐹 ‘ 𝑝 ) ≠ ∅ → ( ( 𝐷 × 𝐸 ) ⊆ dom 𝐹 ∧ Fun ( 𝐹 ↾ ( 𝐷 × 𝐸 ) ) ) ) |
7 |
5 6
|
sylbir |
⊢ ( ∀ 𝑎 ∈ 𝐷 ∀ 𝑏 ∈ 𝐸 ( 𝑎 𝐹 𝑏 ) ≠ ∅ → ( ( 𝐷 × 𝐸 ) ⊆ dom 𝐹 ∧ Fun ( 𝐹 ↾ ( 𝐷 × 𝐸 ) ) ) ) |