Metamath Proof Explorer


Theorem ovn0ssdmfun

Description: If a class' operation value for two operands is not the empty set, the operands are contained in the domain of the class, and the class restricted to the operands is a function, analogous to fvfundmfvn0 . (Contributed by AV, 27-Jan-2020)

Ref Expression
Assertion ovn0ssdmfun aDbEaFbD×EdomFFunFD×E

Proof

Step Hyp Ref Expression
1 fveq2 p=abFp=Fab
2 df-ov aFb=Fab
3 1 2 eqtr4di p=abFp=aFb
4 3 neeq1d p=abFpaFb
5 4 ralxp pD×EFpaDbEaFb
6 fvn0ssdmfun pD×EFpD×EdomFFunFD×E
7 5 6 sylbir aDbEaFbD×EdomFFunFD×E