Metamath Proof Explorer


Theorem ovn0ssdmfun

Description: If a class' operation value for two operands is not the empty set, the operands are contained in the domain of the class, and the class restricted to the operands is a function, analogous to fvfundmfvn0 . (Contributed by AV, 27-Jan-2020)

Ref Expression
Assertion ovn0ssdmfun
|- ( A. a e. D A. b e. E ( a F b ) =/= (/) -> ( ( D X. E ) C_ dom F /\ Fun ( F |` ( D X. E ) ) ) )

Proof

Step Hyp Ref Expression
1 fveq2
 |-  ( p = <. a , b >. -> ( F ` p ) = ( F ` <. a , b >. ) )
2 df-ov
 |-  ( a F b ) = ( F ` <. a , b >. )
3 1 2 eqtr4di
 |-  ( p = <. a , b >. -> ( F ` p ) = ( a F b ) )
4 3 neeq1d
 |-  ( p = <. a , b >. -> ( ( F ` p ) =/= (/) <-> ( a F b ) =/= (/) ) )
5 4 ralxp
 |-  ( A. p e. ( D X. E ) ( F ` p ) =/= (/) <-> A. a e. D A. b e. E ( a F b ) =/= (/) )
6 fvn0ssdmfun
 |-  ( A. p e. ( D X. E ) ( F ` p ) =/= (/) -> ( ( D X. E ) C_ dom F /\ Fun ( F |` ( D X. E ) ) ) )
7 5 6 sylbir
 |-  ( A. a e. D A. b e. E ( a F b ) =/= (/) -> ( ( D X. E ) C_ dom F /\ Fun ( F |` ( D X. E ) ) ) )