Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( p = <. a , b >. -> ( F ` p ) = ( F ` <. a , b >. ) ) |
2 |
|
df-ov |
|- ( a F b ) = ( F ` <. a , b >. ) |
3 |
1 2
|
eqtr4di |
|- ( p = <. a , b >. -> ( F ` p ) = ( a F b ) ) |
4 |
3
|
neeq1d |
|- ( p = <. a , b >. -> ( ( F ` p ) =/= (/) <-> ( a F b ) =/= (/) ) ) |
5 |
4
|
ralxp |
|- ( A. p e. ( D X. E ) ( F ` p ) =/= (/) <-> A. a e. D A. b e. E ( a F b ) =/= (/) ) |
6 |
|
fvn0ssdmfun |
|- ( A. p e. ( D X. E ) ( F ` p ) =/= (/) -> ( ( D X. E ) C_ dom F /\ Fun ( F |` ( D X. E ) ) ) ) |
7 |
5 6
|
sylbir |
|- ( A. a e. D A. b e. E ( a F b ) =/= (/) -> ( ( D X. E ) C_ dom F /\ Fun ( F |` ( D X. E ) ) ) ) |