Description: A Cartesian product expressed as indexed union of ordered-pair class abstractions. (Contributed by AV, 27-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | xpiun | |- ( B X. C ) = U_ x e. B { <. a , b >. | ( a = x /\ b e. C ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsnopab | |- ( { x } X. C ) = { <. a , b >. | ( a = x /\ b e. C ) } |
|
2 | 1 | eqcomi | |- { <. a , b >. | ( a = x /\ b e. C ) } = ( { x } X. C ) |
3 | 2 | a1i | |- ( x e. B -> { <. a , b >. | ( a = x /\ b e. C ) } = ( { x } X. C ) ) |
4 | 3 | iuneq2i | |- U_ x e. B { <. a , b >. | ( a = x /\ b e. C ) } = U_ x e. B ( { x } X. C ) |
5 | iunxpconst | |- U_ x e. B ( { x } X. C ) = ( B X. C ) |
|
6 | 4 5 | eqtr2i | |- ( B X. C ) = U_ x e. B { <. a , b >. | ( a = x /\ b e. C ) } |