Metamath Proof Explorer


Theorem xpiun

Description: A Cartesian product expressed as indexed union of ordered-pair class abstractions. (Contributed by AV, 27-Jan-2020)

Ref Expression
Assertion xpiun
|- ( B X. C ) = U_ x e. B { <. a , b >. | ( a = x /\ b e. C ) }

Proof

Step Hyp Ref Expression
1 xpsnopab
 |-  ( { x } X. C ) = { <. a , b >. | ( a = x /\ b e. C ) }
2 1 eqcomi
 |-  { <. a , b >. | ( a = x /\ b e. C ) } = ( { x } X. C )
3 2 a1i
 |-  ( x e. B -> { <. a , b >. | ( a = x /\ b e. C ) } = ( { x } X. C ) )
4 3 iuneq2i
 |-  U_ x e. B { <. a , b >. | ( a = x /\ b e. C ) } = U_ x e. B ( { x } X. C )
5 iunxpconst
 |-  U_ x e. B ( { x } X. C ) = ( B X. C )
6 4 5 eqtr2i
 |-  ( B X. C ) = U_ x e. B { <. a , b >. | ( a = x /\ b e. C ) }