Metamath Proof Explorer


Theorem ovn0dmfun

Description: If a class operation value for two operands is not the empty set, then the operands are contained in the domain of the class, and the class restricted to the operands is a function, analogous to fvfundmfvn0 . (Contributed by AV, 27-Jan-2020)

Ref Expression
Assertion ovn0dmfun ( ( 𝐴 𝐹 𝐵 ) ≠ ∅ → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) )

Proof

Step Hyp Ref Expression
1 df-ov ( 𝐴 𝐹 𝐵 ) = ( 𝐹 ‘ ⟨ 𝐴 , 𝐵 ⟩ )
2 1 neeq1i ( ( 𝐴 𝐹 𝐵 ) ≠ ∅ ↔ ( 𝐹 ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ≠ ∅ )
3 fvfundmfvn0 ( ( 𝐹 ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ≠ ∅ → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) )
4 2 3 sylbi ( ( 𝐴 𝐹 𝐵 ) ≠ ∅ → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) )