Description: The value of a (multidimensional) Lebesgue outer measure, defined on a nonzero-dimensional space of reals. (Contributed by Glauco Siliprandi, 11-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ovnn0val.1 | |- ( ph -> X e. Fin ) |
|
ovnn0val.2 | |- ( ph -> X =/= (/) ) |
||
ovnn0val.3 | |- ( ph -> A C_ ( RR ^m X ) ) |
||
ovnn0val.4 | |- M = { z e. RR* | E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( A C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) } |
||
Assertion | ovnn0val | |- ( ph -> ( ( voln* ` X ) ` A ) = inf ( M , RR* , < ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovnn0val.1 | |- ( ph -> X e. Fin ) |
|
2 | ovnn0val.2 | |- ( ph -> X =/= (/) ) |
|
3 | ovnn0val.3 | |- ( ph -> A C_ ( RR ^m X ) ) |
|
4 | ovnn0val.4 | |- M = { z e. RR* | E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( A C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) } |
|
5 | 1 3 4 | ovnval2 | |- ( ph -> ( ( voln* ` X ) ` A ) = if ( X = (/) , 0 , inf ( M , RR* , < ) ) ) |
6 | 2 | neneqd | |- ( ph -> -. X = (/) ) |
7 | 6 | iffalsed | |- ( ph -> if ( X = (/) , 0 , inf ( M , RR* , < ) ) = inf ( M , RR* , < ) ) |
8 | 5 7 | eqtrd | |- ( ph -> ( ( voln* ` X ) ` A ) = inf ( M , RR* , < ) ) |