Metamath Proof Explorer


Theorem ovnn0val

Description: The value of a (multidimensional) Lebesgue outer measure, defined on a nonzero-dimensional space of reals. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses ovnn0val.1
|- ( ph -> X e. Fin )
ovnn0val.2
|- ( ph -> X =/= (/) )
ovnn0val.3
|- ( ph -> A C_ ( RR ^m X ) )
ovnn0val.4
|- M = { z e. RR* | E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( A C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) }
Assertion ovnn0val
|- ( ph -> ( ( voln* ` X ) ` A ) = inf ( M , RR* , < ) )

Proof

Step Hyp Ref Expression
1 ovnn0val.1
 |-  ( ph -> X e. Fin )
2 ovnn0val.2
 |-  ( ph -> X =/= (/) )
3 ovnn0val.3
 |-  ( ph -> A C_ ( RR ^m X ) )
4 ovnn0val.4
 |-  M = { z e. RR* | E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( A C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) }
5 1 3 4 ovnval2
 |-  ( ph -> ( ( voln* ` X ) ` A ) = if ( X = (/) , 0 , inf ( M , RR* , < ) ) )
6 2 neneqd
 |-  ( ph -> -. X = (/) )
7 6 iffalsed
 |-  ( ph -> if ( X = (/) , 0 , inf ( M , RR* , < ) ) = inf ( M , RR* , < ) )
8 5 7 eqtrd
 |-  ( ph -> ( ( voln* ` X ) ` A ) = inf ( M , RR* , < ) )