Metamath Proof Explorer


Theorem ovnn0val

Description: The value of a (multidimensional) Lebesgue outer measure, defined on a nonzero-dimensional space of reals. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses ovnn0val.1 ( 𝜑𝑋 ∈ Fin )
ovnn0val.2 ( 𝜑𝑋 ≠ ∅ )
ovnn0val.3 ( 𝜑𝐴 ⊆ ( ℝ ↑m 𝑋 ) )
ovnn0val.4 𝑀 = { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 𝑗 ∈ ℕ X 𝑘𝑋 ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) }
Assertion ovnn0val ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) = inf ( 𝑀 , ℝ* , < ) )

Proof

Step Hyp Ref Expression
1 ovnn0val.1 ( 𝜑𝑋 ∈ Fin )
2 ovnn0val.2 ( 𝜑𝑋 ≠ ∅ )
3 ovnn0val.3 ( 𝜑𝐴 ⊆ ( ℝ ↑m 𝑋 ) )
4 ovnn0val.4 𝑀 = { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 𝑗 ∈ ℕ X 𝑘𝑋 ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) }
5 1 3 4 ovnval2 ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) = if ( 𝑋 = ∅ , 0 , inf ( 𝑀 , ℝ* , < ) ) )
6 2 neneqd ( 𝜑 → ¬ 𝑋 = ∅ )
7 6 iffalsed ( 𝜑 → if ( 𝑋 = ∅ , 0 , inf ( 𝑀 , ℝ* , < ) ) = inf ( 𝑀 , ℝ* , < ) )
8 5 7 eqtrd ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) = inf ( 𝑀 , ℝ* , < ) )