| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovnn0val.1 |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 2 |
|
ovnn0val.2 |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
| 3 |
|
ovnn0val.3 |
⊢ ( 𝜑 → 𝐴 ⊆ ( ℝ ↑m 𝑋 ) ) |
| 4 |
|
ovnn0val.4 |
⊢ 𝑀 = { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } |
| 5 |
1 3 4
|
ovnval2 |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) = if ( 𝑋 = ∅ , 0 , inf ( 𝑀 , ℝ* , < ) ) ) |
| 6 |
2
|
neneqd |
⊢ ( 𝜑 → ¬ 𝑋 = ∅ ) |
| 7 |
6
|
iffalsed |
⊢ ( 𝜑 → if ( 𝑋 = ∅ , 0 , inf ( 𝑀 , ℝ* , < ) ) = inf ( 𝑀 , ℝ* , < ) ) |
| 8 |
5 7
|
eqtrd |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) = inf ( 𝑀 , ℝ* , < ) ) |