Description: The value of a (multidimensional) Lebesgue outer measure, defined on a nonzero-dimensional space of reals. (Contributed by Glauco Siliprandi, 11-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ovnn0val.1 | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | |
ovnn0val.2 | ⊢ ( 𝜑 → 𝑋 ≠ ∅ ) | ||
ovnn0val.3 | ⊢ ( 𝜑 → 𝐴 ⊆ ( ℝ ↑m 𝑋 ) ) | ||
ovnn0val.4 | ⊢ 𝑀 = { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } | ||
Assertion | ovnn0val | ⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) = inf ( 𝑀 , ℝ* , < ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovnn0val.1 | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | |
2 | ovnn0val.2 | ⊢ ( 𝜑 → 𝑋 ≠ ∅ ) | |
3 | ovnn0val.3 | ⊢ ( 𝜑 → 𝐴 ⊆ ( ℝ ↑m 𝑋 ) ) | |
4 | ovnn0val.4 | ⊢ 𝑀 = { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } | |
5 | 1 3 4 | ovnval2 | ⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) = if ( 𝑋 = ∅ , 0 , inf ( 𝑀 , ℝ* , < ) ) ) |
6 | 2 | neneqd | ⊢ ( 𝜑 → ¬ 𝑋 = ∅ ) |
7 | 6 | iffalsed | ⊢ ( 𝜑 → if ( 𝑋 = ∅ , 0 , inf ( 𝑀 , ℝ* , < ) ) = inf ( 𝑀 , ℝ* , < ) ) |
8 | 5 7 | eqtrd | ⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) = inf ( 𝑀 , ℝ* , < ) ) |