Metamath Proof Explorer


Theorem ovnn0val

Description: The value of a (multidimensional) Lebesgue outer measure, defined on a nonzero-dimensional space of reals. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses ovnn0val.1 φXFin
ovnn0val.2 φX
ovnn0val.3 φAX
ovnn0val.4 M=z*|i2XAjkX.ijkz=sum^jkXvol.ijk
Assertion ovnn0val φvoln*XA=supM*<

Proof

Step Hyp Ref Expression
1 ovnn0val.1 φXFin
2 ovnn0val.2 φX
3 ovnn0val.3 φAX
4 ovnn0val.4 M=z*|i2XAjkX.ijkz=sum^jkXvol.ijk
5 1 3 4 ovnval2 φvoln*XA=ifX=0supM*<
6 2 neneqd φ¬X=
7 6 iffalsed φifX=0supM*<=supM*<
8 5 7 eqtrd φvoln*XA=supM*<