Metamath Proof Explorer


Theorem ovnn0val

Description: The value of a (multidimensional) Lebesgue outer measure, defined on a nonzero-dimensional space of reals. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses ovnn0val.1 φ X Fin
ovnn0val.2 φ X
ovnn0val.3 φ A X
ovnn0val.4 M = z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k
Assertion ovnn0val φ voln* X A = sup M * <

Proof

Step Hyp Ref Expression
1 ovnn0val.1 φ X Fin
2 ovnn0val.2 φ X
3 ovnn0val.3 φ A X
4 ovnn0val.4 M = z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k
5 1 3 4 ovnval2 φ voln* X A = if X = 0 sup M * <
6 2 neneqd φ ¬ X =
7 6 iffalsed φ if X = 0 sup M * < = sup M * <
8 5 7 eqtrd φ voln* X A = sup M * <