Metamath Proof Explorer


Theorem ovnval2

Description: Value of the Lebesgue outer measure of a subset A of the space of multidimensional real numbers. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses ovnval2.1 φ X Fin
ovnval2.2 φ A X
ovnval2.3 M = z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k
Assertion ovnval2 φ voln* X A = if X = 0 sup M * <

Proof

Step Hyp Ref Expression
1 ovnval2.1 φ X Fin
2 ovnval2.2 φ A X
3 ovnval2.3 M = z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k
4 1 ovnval φ voln* X = y 𝒫 X if X = 0 sup z * | i 2 X y j k X . i j k z = sum^ j k X vol . i j k * <
5 biidd y = A X = X =
6 sseq1 y = A y j k X . i j k A j k X . i j k
7 6 anbi1d y = A y j k X . i j k z = sum^ j k X vol . i j k A j k X . i j k z = sum^ j k X vol . i j k
8 7 rexbidv y = A i 2 X y j k X . i j k z = sum^ j k X vol . i j k i 2 X A j k X . i j k z = sum^ j k X vol . i j k
9 8 rabbidv y = A z * | i 2 X y j k X . i j k z = sum^ j k X vol . i j k = z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k
10 9 3 eqtr4di y = A z * | i 2 X y j k X . i j k z = sum^ j k X vol . i j k = M
11 10 infeq1d y = A sup z * | i 2 X y j k X . i j k z = sum^ j k X vol . i j k * < = sup M * <
12 5 11 ifbieq2d y = A if X = 0 sup z * | i 2 X y j k X . i j k z = sum^ j k X vol . i j k * < = if X = 0 sup M * <
13 12 adantl φ y = A if X = 0 sup z * | i 2 X y j k X . i j k z = sum^ j k X vol . i j k * < = if X = 0 sup M * <
14 ovexd φ X V
15 14 2 ssexd φ A V
16 elpwg A V A 𝒫 X A X
17 15 16 syl φ A 𝒫 X A X
18 2 17 mpbird φ A 𝒫 X
19 c0ex 0 V
20 19 a1i φ 0 V
21 3 infeq1i sup M * < = sup z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k * <
22 xrltso < Or *
23 22 infex sup z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k * < V
24 23 a1i φ sup z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k * < V
25 21 24 eqeltrid φ sup M * < V
26 20 25 ifcld φ if X = 0 sup M * < V
27 4 13 18 26 fvmptd φ voln* X A = if X = 0 sup M * <