Metamath Proof Explorer


Theorem ovnval2

Description: Value of the Lebesgue outer measure of a subset A of the space of multidimensional real numbers. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses ovnval2.1 φXFin
ovnval2.2 φAX
ovnval2.3 M=z*|i2XAjkX.ijkz=sum^jkXvol.ijk
Assertion ovnval2 φvoln*XA=ifX=0supM*<

Proof

Step Hyp Ref Expression
1 ovnval2.1 φXFin
2 ovnval2.2 φAX
3 ovnval2.3 M=z*|i2XAjkX.ijkz=sum^jkXvol.ijk
4 1 ovnval φvoln*X=y𝒫XifX=0supz*|i2XyjkX.ijkz=sum^jkXvol.ijk*<
5 biidd y=AX=X=
6 sseq1 y=AyjkX.ijkAjkX.ijk
7 6 anbi1d y=AyjkX.ijkz=sum^jkXvol.ijkAjkX.ijkz=sum^jkXvol.ijk
8 7 rexbidv y=Ai2XyjkX.ijkz=sum^jkXvol.ijki2XAjkX.ijkz=sum^jkXvol.ijk
9 8 rabbidv y=Az*|i2XyjkX.ijkz=sum^jkXvol.ijk=z*|i2XAjkX.ijkz=sum^jkXvol.ijk
10 9 3 eqtr4di y=Az*|i2XyjkX.ijkz=sum^jkXvol.ijk=M
11 10 infeq1d y=Asupz*|i2XyjkX.ijkz=sum^jkXvol.ijk*<=supM*<
12 5 11 ifbieq2d y=AifX=0supz*|i2XyjkX.ijkz=sum^jkXvol.ijk*<=ifX=0supM*<
13 12 adantl φy=AifX=0supz*|i2XyjkX.ijkz=sum^jkXvol.ijk*<=ifX=0supM*<
14 ovexd φXV
15 14 2 ssexd φAV
16 elpwg AVA𝒫XAX
17 15 16 syl φA𝒫XAX
18 2 17 mpbird φA𝒫X
19 c0ex 0V
20 19 a1i φ0V
21 3 infeq1i supM*<=supz*|i2XAjkX.ijkz=sum^jkXvol.ijk*<
22 xrltso <Or*
23 22 infex supz*|i2XAjkX.ijkz=sum^jkXvol.ijk*<V
24 23 a1i φsupz*|i2XAjkX.ijkz=sum^jkXvol.ijk*<V
25 21 24 eqeltrid φsupM*<V
26 20 25 ifcld φifX=0supM*<V
27 4 13 18 26 fvmptd φvoln*XA=ifX=0supM*<