Metamath Proof Explorer


Definition df-ovoln

Description: Define the outer measure for the space of multidimensional real numbers. The cardinality of x is the dimension of the space modeled. Definition 115C of Fremlin1 p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Assertion df-ovoln voln* = x Fin y 𝒫 x if x = 0 sup z * | i 2 x y j k x . i j k z = sum^ j k x vol . i j k * <

Detailed syntax breakdown

Step Hyp Ref Expression
0 covoln class voln*
1 vx setvar x
2 cfn class Fin
3 vy setvar y
4 cr class
5 cmap class 𝑚
6 1 cv setvar x
7 4 6 5 co class x
8 7 cpw class 𝒫 x
9 c0 class
10 6 9 wceq wff x =
11 cc0 class 0
12 vz setvar z
13 cxr class *
14 vi setvar i
15 4 4 cxp class 2
16 15 6 5 co class 2 x
17 cn class
18 16 17 5 co class 2 x
19 3 cv setvar y
20 vj setvar j
21 vk setvar k
22 cico class .
23 14 cv setvar i
24 20 cv setvar j
25 24 23 cfv class i j
26 22 25 ccom class . i j
27 21 cv setvar k
28 27 26 cfv class . i j k
29 21 6 28 cixp class k x . i j k
30 20 17 29 ciun class j k x . i j k
31 19 30 wss wff y j k x . i j k
32 12 cv setvar z
33 csumge0 class sum^
34 cvol class vol
35 28 34 cfv class vol . i j k
36 6 35 21 cprod class k x vol . i j k
37 20 17 36 cmpt class j k x vol . i j k
38 37 33 cfv class sum^ j k x vol . i j k
39 32 38 wceq wff z = sum^ j k x vol . i j k
40 31 39 wa wff y j k x . i j k z = sum^ j k x vol . i j k
41 40 14 18 wrex wff i 2 x y j k x . i j k z = sum^ j k x vol . i j k
42 41 12 13 crab class z * | i 2 x y j k x . i j k z = sum^ j k x vol . i j k
43 clt class <
44 42 13 43 cinf class sup z * | i 2 x y j k x . i j k z = sum^ j k x vol . i j k * <
45 10 11 44 cif class if x = 0 sup z * | i 2 x y j k x . i j k z = sum^ j k x vol . i j k * <
46 3 8 45 cmpt class y 𝒫 x if x = 0 sup z * | i 2 x y j k x . i j k z = sum^ j k x vol . i j k * <
47 1 2 46 cmpt class x Fin y 𝒫 x if x = 0 sup z * | i 2 x y j k x . i j k z = sum^ j k x vol . i j k * <
48 0 47 wceq wff voln* = x Fin y 𝒫 x if x = 0 sup z * | i 2 x y j k x . i j k z = sum^ j k x vol . i j k * <