Metamath Proof Explorer


Definition df-ovoln

Description: Define the outer measure for the space of multidimensional real numbers. The cardinality of x is the dimension of the space modeled. Definition 115C of Fremlin1 p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Assertion df-ovoln voln*=xFiny𝒫xifx=0supz*|i2xyjkx.ijkz=sum^jkxvol.ijk*<

Detailed syntax breakdown

Step Hyp Ref Expression
0 covoln classvoln*
1 vx setvarx
2 cfn classFin
3 vy setvary
4 cr class
5 cmap class𝑚
6 1 cv setvarx
7 4 6 5 co classx
8 7 cpw class𝒫x
9 c0 class
10 6 9 wceq wffx=
11 cc0 class0
12 vz setvarz
13 cxr class*
14 vi setvari
15 4 4 cxp class2
16 15 6 5 co class2x
17 cn class
18 16 17 5 co class2x
19 3 cv setvary
20 vj setvarj
21 vk setvark
22 cico class.
23 14 cv setvari
24 20 cv setvarj
25 24 23 cfv classij
26 22 25 ccom class.ij
27 21 cv setvark
28 27 26 cfv class.ijk
29 21 6 28 cixp classkx.ijk
30 20 17 29 ciun classjkx.ijk
31 19 30 wss wffyjkx.ijk
32 12 cv setvarz
33 csumge0 classsum^
34 cvol classvol
35 28 34 cfv classvol.ijk
36 6 35 21 cprod classkxvol.ijk
37 20 17 36 cmpt classjkxvol.ijk
38 37 33 cfv classsum^jkxvol.ijk
39 32 38 wceq wffz=sum^jkxvol.ijk
40 31 39 wa wffyjkx.ijkz=sum^jkxvol.ijk
41 40 14 18 wrex wffi2xyjkx.ijkz=sum^jkxvol.ijk
42 41 12 13 crab classz*|i2xyjkx.ijkz=sum^jkxvol.ijk
43 clt class<
44 42 13 43 cinf classsupz*|i2xyjkx.ijkz=sum^jkxvol.ijk*<
45 10 11 44 cif classifx=0supz*|i2xyjkx.ijkz=sum^jkxvol.ijk*<
46 3 8 45 cmpt classy𝒫xifx=0supz*|i2xyjkx.ijkz=sum^jkxvol.ijk*<
47 1 2 46 cmpt classxFiny𝒫xifx=0supz*|i2xyjkx.ijkz=sum^jkxvol.ijk*<
48 0 47 wceq wffvoln*=xFiny𝒫xifx=0supz*|i2xyjkx.ijkz=sum^jkxvol.ijk*<