Metamath Proof Explorer


Theorem ovnval2b

Description: Value of the Lebesgue outer measure of a subset A of the space of multidimensional real numbers. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses ovnval2b.1 φ X Fin
ovnval2b.2 φ A X
ovnval2b.3 L = a 𝒫 X z * | i 2 X a j k X . i j k z = sum^ j k X vol . i j k
Assertion ovnval2b φ voln* X A = if X = 0 sup L A * <

Proof

Step Hyp Ref Expression
1 ovnval2b.1 φ X Fin
2 ovnval2b.2 φ A X
3 ovnval2b.3 L = a 𝒫 X z * | i 2 X a j k X . i j k z = sum^ j k X vol . i j k
4 eqid z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k = z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k
5 1 2 4 ovnval2 φ voln* X A = if X = 0 sup z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k * <
6 biidd φ X = X =
7 cleq1lem a = A a j k X . i j k z = sum^ j k X vol . i j k A j k X . i j k z = sum^ j k X vol . i j k
8 7 rexbidv a = A i 2 X a j k X . i j k z = sum^ j k X vol . i j k i 2 X A j k X . i j k z = sum^ j k X vol . i j k
9 8 rabbidv a = A z * | i 2 X a j k X . i j k z = sum^ j k X vol . i j k = z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k
10 ovexd φ X V
11 10 2 ssexd φ A V
12 11 2 elpwd φ A 𝒫 X
13 xrex * V
14 13 rabex z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k V
15 14 a1i φ z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k V
16 3 9 12 15 fvmptd3 φ L A = z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k
17 16 eqcomd φ z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k = L A
18 17 infeq1d φ sup z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k * < = sup L A * <
19 6 18 ifbieq2d φ if X = 0 sup z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k * < = if X = 0 sup L A * <
20 5 19 eqtrd φ voln* X A = if X = 0 sup L A * <