Metamath Proof Explorer


Theorem ovnval2b

Description: Value of the Lebesgue outer measure of a subset A of the space of multidimensional real numbers. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses ovnval2b.1 φXFin
ovnval2b.2 φAX
ovnval2b.3 L=a𝒫Xz*|i2XajkX.ijkz=sum^jkXvol.ijk
Assertion ovnval2b φvoln*XA=ifX=0supLA*<

Proof

Step Hyp Ref Expression
1 ovnval2b.1 φXFin
2 ovnval2b.2 φAX
3 ovnval2b.3 L=a𝒫Xz*|i2XajkX.ijkz=sum^jkXvol.ijk
4 eqid z*|i2XAjkX.ijkz=sum^jkXvol.ijk=z*|i2XAjkX.ijkz=sum^jkXvol.ijk
5 1 2 4 ovnval2 φvoln*XA=ifX=0supz*|i2XAjkX.ijkz=sum^jkXvol.ijk*<
6 biidd φX=X=
7 cleq1lem a=AajkX.ijkz=sum^jkXvol.ijkAjkX.ijkz=sum^jkXvol.ijk
8 7 rexbidv a=Ai2XajkX.ijkz=sum^jkXvol.ijki2XAjkX.ijkz=sum^jkXvol.ijk
9 8 rabbidv a=Az*|i2XajkX.ijkz=sum^jkXvol.ijk=z*|i2XAjkX.ijkz=sum^jkXvol.ijk
10 ovexd φXV
11 10 2 ssexd φAV
12 11 2 elpwd φA𝒫X
13 xrex *V
14 13 rabex z*|i2XAjkX.ijkz=sum^jkXvol.ijkV
15 14 a1i φz*|i2XAjkX.ijkz=sum^jkXvol.ijkV
16 3 9 12 15 fvmptd3 φLA=z*|i2XAjkX.ijkz=sum^jkXvol.ijk
17 16 eqcomd φz*|i2XAjkX.ijkz=sum^jkXvol.ijk=LA
18 17 infeq1d φsupz*|i2XAjkX.ijkz=sum^jkXvol.ijk*<=supLA*<
19 6 18 ifbieq2d φifX=0supz*|i2XAjkX.ijkz=sum^jkXvol.ijk*<=ifX=0supLA*<
20 5 19 eqtrd φvoln*XA=ifX=0supLA*<