Description: The Lebesgue measure of a left-closed, right-open interval with real bounds, is real. (Contributed by Glauco Siliprandi, 11-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | volicorescl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ico | |
|
2 | 1 | reseq1i | |
3 | ressxr | |
|
4 | resmpo | |
|
5 | 3 3 4 | mp2an | |
6 | 2 5 | eqtri | |
7 | 6 | rneqi | |
8 | 7 | eleq2i | |
9 | 8 | biimpi | |
10 | eqid | |
|
11 | xrex | |
|
12 | 11 | rabex | |
13 | 10 12 | elrnmpo | |
14 | 9 13 | sylib | |
15 | simpr | |
|
16 | 3 | sseli | |
17 | 16 | adantr | |
18 | 3 | sseli | |
19 | 18 | adantl | |
20 | icoval | |
|
21 | 17 19 20 | syl2anc | |
22 | 21 | eqcomd | |
23 | 22 | adantr | |
24 | 15 23 | eqtrd | |
25 | 24 | ex | |
26 | 25 | adantll | |
27 | 26 | reximdva | |
28 | 27 | reximdva | |
29 | 14 28 | mpd | |
30 | fveq2 | |
|
31 | 30 | adantl | |
32 | volicorecl | |
|
33 | 32 | adantr | |
34 | 31 33 | eqeltrd | |
35 | 34 | ex | |
36 | 35 | a1i | |
37 | 36 | rexlimdvv | |
38 | 29 37 | mpd | |
39 | 38 | 2a1d | |
40 | 39 | rexlimdvv | |
41 | 29 40 | mpd | |