Metamath Proof Explorer


Theorem volicorescl

Description: The Lebesgue measure of a left-closed, right-open interval with real bounds, is real. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Assertion volicorescl Aran.2volA

Proof

Step Hyp Ref Expression
1 df-ico .=x*,y*z*|xzz<y
2 1 reseq1i .2=x*,y*z*|xzz<y2
3 ressxr *
4 resmpo **x*,y*z*|xzz<y2=x,yz*|xzz<y
5 3 3 4 mp2an x*,y*z*|xzz<y2=x,yz*|xzz<y
6 2 5 eqtri .2=x,yz*|xzz<y
7 6 rneqi ran.2=ranx,yz*|xzz<y
8 7 eleq2i Aran.2Aranx,yz*|xzz<y
9 8 biimpi Aran.2Aranx,yz*|xzz<y
10 eqid x,yz*|xzz<y=x,yz*|xzz<y
11 xrex *V
12 11 rabex z*|xzz<yV
13 10 12 elrnmpo Aranx,yz*|xzz<yxyA=z*|xzz<y
14 9 13 sylib Aran.2xyA=z*|xzz<y
15 simpr xyA=z*|xzz<yA=z*|xzz<y
16 3 sseli xx*
17 16 adantr xyx*
18 3 sseli yy*
19 18 adantl xyy*
20 icoval x*y*xy=z*|xzz<y
21 17 19 20 syl2anc xyxy=z*|xzz<y
22 21 eqcomd xyz*|xzz<y=xy
23 22 adantr xyA=z*|xzz<yz*|xzz<y=xy
24 15 23 eqtrd xyA=z*|xzz<yA=xy
25 24 ex xyA=z*|xzz<yA=xy
26 25 adantll Aran.2xyA=z*|xzz<yA=xy
27 26 reximdva Aran.2xyA=z*|xzz<yyA=xy
28 27 reximdva Aran.2xyA=z*|xzz<yxyA=xy
29 14 28 mpd Aran.2xyA=xy
30 fveq2 A=xyvolA=volxy
31 30 adantl xyA=xyvolA=volxy
32 volicorecl xyvolxy
33 32 adantr xyA=xyvolxy
34 31 33 eqeltrd xyA=xyvolA
35 34 ex xyA=xyvolA
36 35 a1i Aran.2xyA=xyvolA
37 36 rexlimdvv Aran.2xyA=xyvolA
38 29 37 mpd Aran.2volA
39 38 2a1d Aran.2xyA=xyvolA
40 39 rexlimdvv Aran.2xyA=xyvolA
41 29 40 mpd Aran.2volA