Step |
Hyp |
Ref |
Expression |
1 |
|
df-ico |
|- [,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } ) |
2 |
1
|
reseq1i |
|- ( [,) |` ( RR X. RR ) ) = ( ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } ) |` ( RR X. RR ) ) |
3 |
|
ressxr |
|- RR C_ RR* |
4 |
|
resmpo |
|- ( ( RR C_ RR* /\ RR C_ RR* ) -> ( ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } ) |` ( RR X. RR ) ) = ( x e. RR , y e. RR |-> { z e. RR* | ( x <_ z /\ z < y ) } ) ) |
5 |
3 3 4
|
mp2an |
|- ( ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } ) |` ( RR X. RR ) ) = ( x e. RR , y e. RR |-> { z e. RR* | ( x <_ z /\ z < y ) } ) |
6 |
2 5
|
eqtri |
|- ( [,) |` ( RR X. RR ) ) = ( x e. RR , y e. RR |-> { z e. RR* | ( x <_ z /\ z < y ) } ) |
7 |
6
|
rneqi |
|- ran ( [,) |` ( RR X. RR ) ) = ran ( x e. RR , y e. RR |-> { z e. RR* | ( x <_ z /\ z < y ) } ) |
8 |
7
|
eleq2i |
|- ( A e. ran ( [,) |` ( RR X. RR ) ) <-> A e. ran ( x e. RR , y e. RR |-> { z e. RR* | ( x <_ z /\ z < y ) } ) ) |
9 |
8
|
biimpi |
|- ( A e. ran ( [,) |` ( RR X. RR ) ) -> A e. ran ( x e. RR , y e. RR |-> { z e. RR* | ( x <_ z /\ z < y ) } ) ) |
10 |
|
eqid |
|- ( x e. RR , y e. RR |-> { z e. RR* | ( x <_ z /\ z < y ) } ) = ( x e. RR , y e. RR |-> { z e. RR* | ( x <_ z /\ z < y ) } ) |
11 |
|
xrex |
|- RR* e. _V |
12 |
11
|
rabex |
|- { z e. RR* | ( x <_ z /\ z < y ) } e. _V |
13 |
10 12
|
elrnmpo |
|- ( A e. ran ( x e. RR , y e. RR |-> { z e. RR* | ( x <_ z /\ z < y ) } ) <-> E. x e. RR E. y e. RR A = { z e. RR* | ( x <_ z /\ z < y ) } ) |
14 |
9 13
|
sylib |
|- ( A e. ran ( [,) |` ( RR X. RR ) ) -> E. x e. RR E. y e. RR A = { z e. RR* | ( x <_ z /\ z < y ) } ) |
15 |
|
simpr |
|- ( ( ( x e. RR /\ y e. RR ) /\ A = { z e. RR* | ( x <_ z /\ z < y ) } ) -> A = { z e. RR* | ( x <_ z /\ z < y ) } ) |
16 |
3
|
sseli |
|- ( x e. RR -> x e. RR* ) |
17 |
16
|
adantr |
|- ( ( x e. RR /\ y e. RR ) -> x e. RR* ) |
18 |
3
|
sseli |
|- ( y e. RR -> y e. RR* ) |
19 |
18
|
adantl |
|- ( ( x e. RR /\ y e. RR ) -> y e. RR* ) |
20 |
|
icoval |
|- ( ( x e. RR* /\ y e. RR* ) -> ( x [,) y ) = { z e. RR* | ( x <_ z /\ z < y ) } ) |
21 |
17 19 20
|
syl2anc |
|- ( ( x e. RR /\ y e. RR ) -> ( x [,) y ) = { z e. RR* | ( x <_ z /\ z < y ) } ) |
22 |
21
|
eqcomd |
|- ( ( x e. RR /\ y e. RR ) -> { z e. RR* | ( x <_ z /\ z < y ) } = ( x [,) y ) ) |
23 |
22
|
adantr |
|- ( ( ( x e. RR /\ y e. RR ) /\ A = { z e. RR* | ( x <_ z /\ z < y ) } ) -> { z e. RR* | ( x <_ z /\ z < y ) } = ( x [,) y ) ) |
24 |
15 23
|
eqtrd |
|- ( ( ( x e. RR /\ y e. RR ) /\ A = { z e. RR* | ( x <_ z /\ z < y ) } ) -> A = ( x [,) y ) ) |
25 |
24
|
ex |
|- ( ( x e. RR /\ y e. RR ) -> ( A = { z e. RR* | ( x <_ z /\ z < y ) } -> A = ( x [,) y ) ) ) |
26 |
25
|
adantll |
|- ( ( ( A e. ran ( [,) |` ( RR X. RR ) ) /\ x e. RR ) /\ y e. RR ) -> ( A = { z e. RR* | ( x <_ z /\ z < y ) } -> A = ( x [,) y ) ) ) |
27 |
26
|
reximdva |
|- ( ( A e. ran ( [,) |` ( RR X. RR ) ) /\ x e. RR ) -> ( E. y e. RR A = { z e. RR* | ( x <_ z /\ z < y ) } -> E. y e. RR A = ( x [,) y ) ) ) |
28 |
27
|
reximdva |
|- ( A e. ran ( [,) |` ( RR X. RR ) ) -> ( E. x e. RR E. y e. RR A = { z e. RR* | ( x <_ z /\ z < y ) } -> E. x e. RR E. y e. RR A = ( x [,) y ) ) ) |
29 |
14 28
|
mpd |
|- ( A e. ran ( [,) |` ( RR X. RR ) ) -> E. x e. RR E. y e. RR A = ( x [,) y ) ) |
30 |
|
fveq2 |
|- ( A = ( x [,) y ) -> ( vol ` A ) = ( vol ` ( x [,) y ) ) ) |
31 |
30
|
adantl |
|- ( ( ( x e. RR /\ y e. RR ) /\ A = ( x [,) y ) ) -> ( vol ` A ) = ( vol ` ( x [,) y ) ) ) |
32 |
|
volicorecl |
|- ( ( x e. RR /\ y e. RR ) -> ( vol ` ( x [,) y ) ) e. RR ) |
33 |
32
|
adantr |
|- ( ( ( x e. RR /\ y e. RR ) /\ A = ( x [,) y ) ) -> ( vol ` ( x [,) y ) ) e. RR ) |
34 |
31 33
|
eqeltrd |
|- ( ( ( x e. RR /\ y e. RR ) /\ A = ( x [,) y ) ) -> ( vol ` A ) e. RR ) |
35 |
34
|
ex |
|- ( ( x e. RR /\ y e. RR ) -> ( A = ( x [,) y ) -> ( vol ` A ) e. RR ) ) |
36 |
35
|
a1i |
|- ( A e. ran ( [,) |` ( RR X. RR ) ) -> ( ( x e. RR /\ y e. RR ) -> ( A = ( x [,) y ) -> ( vol ` A ) e. RR ) ) ) |
37 |
36
|
rexlimdvv |
|- ( A e. ran ( [,) |` ( RR X. RR ) ) -> ( E. x e. RR E. y e. RR A = ( x [,) y ) -> ( vol ` A ) e. RR ) ) |
38 |
29 37
|
mpd |
|- ( A e. ran ( [,) |` ( RR X. RR ) ) -> ( vol ` A ) e. RR ) |
39 |
38
|
2a1d |
|- ( A e. ran ( [,) |` ( RR X. RR ) ) -> ( ( x e. RR /\ y e. RR ) -> ( A = ( x [,) y ) -> ( vol ` A ) e. RR ) ) ) |
40 |
39
|
rexlimdvv |
|- ( A e. ran ( [,) |` ( RR X. RR ) ) -> ( E. x e. RR E. y e. RR A = ( x [,) y ) -> ( vol ` A ) e. RR ) ) |
41 |
29 40
|
mpd |
|- ( A e. ran ( [,) |` ( RR X. RR ) ) -> ( vol ` A ) e. RR ) |