Metamath Proof Explorer


Theorem ovnprodcl

Description: The product used in the definition of the outer Lebesgue measure in R^n is a nonnegative real. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses ovnprodcl.kph
|- F/ k ph
ovnprodcl.x
|- ( ph -> X e. Fin )
ovnprodcl.f
|- ( ph -> F : NN --> ( ( RR X. RR ) ^m X ) )
ovnprodcl.i
|- ( ph -> I e. NN )
Assertion ovnprodcl
|- ( ph -> prod_ k e. X ( vol ` ( ( [,) o. ( F ` I ) ) ` k ) ) e. ( 0 [,) +oo ) )

Proof

Step Hyp Ref Expression
1 ovnprodcl.kph
 |-  F/ k ph
2 ovnprodcl.x
 |-  ( ph -> X e. Fin )
3 ovnprodcl.f
 |-  ( ph -> F : NN --> ( ( RR X. RR ) ^m X ) )
4 ovnprodcl.i
 |-  ( ph -> I e. NN )
5 3 4 ffvelrnd
 |-  ( ph -> ( F ` I ) e. ( ( RR X. RR ) ^m X ) )
6 elmapi
 |-  ( ( F ` I ) e. ( ( RR X. RR ) ^m X ) -> ( F ` I ) : X --> ( RR X. RR ) )
7 5 6 syl
 |-  ( ph -> ( F ` I ) : X --> ( RR X. RR ) )
8 1 2 7 hoiprodcl
 |-  ( ph -> prod_ k e. X ( vol ` ( ( [,) o. ( F ` I ) ) ` k ) ) e. ( 0 [,) +oo ) )