Description: The product used in the definition of the outer Lebesgue measure in R^n is a nonnegative real. (Contributed by Glauco Siliprandi, 11-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovnprodcl.kph | |- F/ k ph |
|
| ovnprodcl.x | |- ( ph -> X e. Fin ) |
||
| ovnprodcl.f | |- ( ph -> F : NN --> ( ( RR X. RR ) ^m X ) ) |
||
| ovnprodcl.i | |- ( ph -> I e. NN ) |
||
| Assertion | ovnprodcl | |- ( ph -> prod_ k e. X ( vol ` ( ( [,) o. ( F ` I ) ) ` k ) ) e. ( 0 [,) +oo ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovnprodcl.kph | |- F/ k ph |
|
| 2 | ovnprodcl.x | |- ( ph -> X e. Fin ) |
|
| 3 | ovnprodcl.f | |- ( ph -> F : NN --> ( ( RR X. RR ) ^m X ) ) |
|
| 4 | ovnprodcl.i | |- ( ph -> I e. NN ) |
|
| 5 | 3 4 | ffvelcdmd | |- ( ph -> ( F ` I ) e. ( ( RR X. RR ) ^m X ) ) |
| 6 | elmapi | |- ( ( F ` I ) e. ( ( RR X. RR ) ^m X ) -> ( F ` I ) : X --> ( RR X. RR ) ) |
|
| 7 | 5 6 | syl | |- ( ph -> ( F ` I ) : X --> ( RR X. RR ) ) |
| 8 | 1 2 7 | hoiprodcl | |- ( ph -> prod_ k e. X ( vol ` ( ( [,) o. ( F ` I ) ) ` k ) ) e. ( 0 [,) +oo ) ) |