| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoiprodcl.1 |  |-  F/ k ph | 
						
							| 2 |  | hoiprodcl.2 |  |-  ( ph -> X e. Fin ) | 
						
							| 3 |  | hoiprodcl.3 |  |-  ( ph -> I : X --> ( RR X. RR ) ) | 
						
							| 4 |  | 0xr |  |-  0 e. RR* | 
						
							| 5 | 4 | a1i |  |-  ( ph -> 0 e. RR* ) | 
						
							| 6 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 7 | 6 | a1i |  |-  ( ph -> +oo e. RR* ) | 
						
							| 8 | 3 | adantr |  |-  ( ( ph /\ k e. X ) -> I : X --> ( RR X. RR ) ) | 
						
							| 9 |  | simpr |  |-  ( ( ph /\ k e. X ) -> k e. X ) | 
						
							| 10 | 8 9 | fvovco |  |-  ( ( ph /\ k e. X ) -> ( ( [,) o. I ) ` k ) = ( ( 1st ` ( I ` k ) ) [,) ( 2nd ` ( I ` k ) ) ) ) | 
						
							| 11 | 10 | fveq2d |  |-  ( ( ph /\ k e. X ) -> ( vol ` ( ( [,) o. I ) ` k ) ) = ( vol ` ( ( 1st ` ( I ` k ) ) [,) ( 2nd ` ( I ` k ) ) ) ) ) | 
						
							| 12 | 3 | ffvelcdmda |  |-  ( ( ph /\ k e. X ) -> ( I ` k ) e. ( RR X. RR ) ) | 
						
							| 13 |  | xp1st |  |-  ( ( I ` k ) e. ( RR X. RR ) -> ( 1st ` ( I ` k ) ) e. RR ) | 
						
							| 14 | 12 13 | syl |  |-  ( ( ph /\ k e. X ) -> ( 1st ` ( I ` k ) ) e. RR ) | 
						
							| 15 |  | xp2nd |  |-  ( ( I ` k ) e. ( RR X. RR ) -> ( 2nd ` ( I ` k ) ) e. RR ) | 
						
							| 16 | 12 15 | syl |  |-  ( ( ph /\ k e. X ) -> ( 2nd ` ( I ` k ) ) e. RR ) | 
						
							| 17 |  | volico |  |-  ( ( ( 1st ` ( I ` k ) ) e. RR /\ ( 2nd ` ( I ` k ) ) e. RR ) -> ( vol ` ( ( 1st ` ( I ` k ) ) [,) ( 2nd ` ( I ` k ) ) ) ) = if ( ( 1st ` ( I ` k ) ) < ( 2nd ` ( I ` k ) ) , ( ( 2nd ` ( I ` k ) ) - ( 1st ` ( I ` k ) ) ) , 0 ) ) | 
						
							| 18 | 14 16 17 | syl2anc |  |-  ( ( ph /\ k e. X ) -> ( vol ` ( ( 1st ` ( I ` k ) ) [,) ( 2nd ` ( I ` k ) ) ) ) = if ( ( 1st ` ( I ` k ) ) < ( 2nd ` ( I ` k ) ) , ( ( 2nd ` ( I ` k ) ) - ( 1st ` ( I ` k ) ) ) , 0 ) ) | 
						
							| 19 | 11 18 | eqtrd |  |-  ( ( ph /\ k e. X ) -> ( vol ` ( ( [,) o. I ) ` k ) ) = if ( ( 1st ` ( I ` k ) ) < ( 2nd ` ( I ` k ) ) , ( ( 2nd ` ( I ` k ) ) - ( 1st ` ( I ` k ) ) ) , 0 ) ) | 
						
							| 20 | 16 14 | resubcld |  |-  ( ( ph /\ k e. X ) -> ( ( 2nd ` ( I ` k ) ) - ( 1st ` ( I ` k ) ) ) e. RR ) | 
						
							| 21 |  | 0red |  |-  ( ( ph /\ k e. X ) -> 0 e. RR ) | 
						
							| 22 | 20 21 | ifcld |  |-  ( ( ph /\ k e. X ) -> if ( ( 1st ` ( I ` k ) ) < ( 2nd ` ( I ` k ) ) , ( ( 2nd ` ( I ` k ) ) - ( 1st ` ( I ` k ) ) ) , 0 ) e. RR ) | 
						
							| 23 | 19 22 | eqeltrd |  |-  ( ( ph /\ k e. X ) -> ( vol ` ( ( [,) o. I ) ` k ) ) e. RR ) | 
						
							| 24 | 1 2 23 | fprodreclf |  |-  ( ph -> prod_ k e. X ( vol ` ( ( [,) o. I ) ` k ) ) e. RR ) | 
						
							| 25 | 24 | rexrd |  |-  ( ph -> prod_ k e. X ( vol ` ( ( [,) o. I ) ` k ) ) e. RR* ) | 
						
							| 26 | 16 | rexrd |  |-  ( ( ph /\ k e. X ) -> ( 2nd ` ( I ` k ) ) e. RR* ) | 
						
							| 27 |  | icombl |  |-  ( ( ( 1st ` ( I ` k ) ) e. RR /\ ( 2nd ` ( I ` k ) ) e. RR* ) -> ( ( 1st ` ( I ` k ) ) [,) ( 2nd ` ( I ` k ) ) ) e. dom vol ) | 
						
							| 28 | 14 26 27 | syl2anc |  |-  ( ( ph /\ k e. X ) -> ( ( 1st ` ( I ` k ) ) [,) ( 2nd ` ( I ` k ) ) ) e. dom vol ) | 
						
							| 29 | 10 28 | eqeltrd |  |-  ( ( ph /\ k e. X ) -> ( ( [,) o. I ) ` k ) e. dom vol ) | 
						
							| 30 |  | volge0 |  |-  ( ( ( [,) o. I ) ` k ) e. dom vol -> 0 <_ ( vol ` ( ( [,) o. I ) ` k ) ) ) | 
						
							| 31 | 29 30 | syl |  |-  ( ( ph /\ k e. X ) -> 0 <_ ( vol ` ( ( [,) o. I ) ` k ) ) ) | 
						
							| 32 | 1 2 23 31 | fprodge0 |  |-  ( ph -> 0 <_ prod_ k e. X ( vol ` ( ( [,) o. I ) ` k ) ) ) | 
						
							| 33 | 24 | ltpnfd |  |-  ( ph -> prod_ k e. X ( vol ` ( ( [,) o. I ) ` k ) ) < +oo ) | 
						
							| 34 | 5 7 25 32 33 | elicod |  |-  ( ph -> prod_ k e. X ( vol ` ( ( [,) o. I ) ` k ) ) e. ( 0 [,) +oo ) ) |