Step |
Hyp |
Ref |
Expression |
1 |
|
hoiprodcl.1 |
|- F/ k ph |
2 |
|
hoiprodcl.2 |
|- ( ph -> X e. Fin ) |
3 |
|
hoiprodcl.3 |
|- ( ph -> I : X --> ( RR X. RR ) ) |
4 |
|
0xr |
|- 0 e. RR* |
5 |
4
|
a1i |
|- ( ph -> 0 e. RR* ) |
6 |
|
pnfxr |
|- +oo e. RR* |
7 |
6
|
a1i |
|- ( ph -> +oo e. RR* ) |
8 |
3
|
adantr |
|- ( ( ph /\ k e. X ) -> I : X --> ( RR X. RR ) ) |
9 |
|
simpr |
|- ( ( ph /\ k e. X ) -> k e. X ) |
10 |
8 9
|
fvovco |
|- ( ( ph /\ k e. X ) -> ( ( [,) o. I ) ` k ) = ( ( 1st ` ( I ` k ) ) [,) ( 2nd ` ( I ` k ) ) ) ) |
11 |
10
|
fveq2d |
|- ( ( ph /\ k e. X ) -> ( vol ` ( ( [,) o. I ) ` k ) ) = ( vol ` ( ( 1st ` ( I ` k ) ) [,) ( 2nd ` ( I ` k ) ) ) ) ) |
12 |
3
|
ffvelrnda |
|- ( ( ph /\ k e. X ) -> ( I ` k ) e. ( RR X. RR ) ) |
13 |
|
xp1st |
|- ( ( I ` k ) e. ( RR X. RR ) -> ( 1st ` ( I ` k ) ) e. RR ) |
14 |
12 13
|
syl |
|- ( ( ph /\ k e. X ) -> ( 1st ` ( I ` k ) ) e. RR ) |
15 |
|
xp2nd |
|- ( ( I ` k ) e. ( RR X. RR ) -> ( 2nd ` ( I ` k ) ) e. RR ) |
16 |
12 15
|
syl |
|- ( ( ph /\ k e. X ) -> ( 2nd ` ( I ` k ) ) e. RR ) |
17 |
|
volico |
|- ( ( ( 1st ` ( I ` k ) ) e. RR /\ ( 2nd ` ( I ` k ) ) e. RR ) -> ( vol ` ( ( 1st ` ( I ` k ) ) [,) ( 2nd ` ( I ` k ) ) ) ) = if ( ( 1st ` ( I ` k ) ) < ( 2nd ` ( I ` k ) ) , ( ( 2nd ` ( I ` k ) ) - ( 1st ` ( I ` k ) ) ) , 0 ) ) |
18 |
14 16 17
|
syl2anc |
|- ( ( ph /\ k e. X ) -> ( vol ` ( ( 1st ` ( I ` k ) ) [,) ( 2nd ` ( I ` k ) ) ) ) = if ( ( 1st ` ( I ` k ) ) < ( 2nd ` ( I ` k ) ) , ( ( 2nd ` ( I ` k ) ) - ( 1st ` ( I ` k ) ) ) , 0 ) ) |
19 |
11 18
|
eqtrd |
|- ( ( ph /\ k e. X ) -> ( vol ` ( ( [,) o. I ) ` k ) ) = if ( ( 1st ` ( I ` k ) ) < ( 2nd ` ( I ` k ) ) , ( ( 2nd ` ( I ` k ) ) - ( 1st ` ( I ` k ) ) ) , 0 ) ) |
20 |
16 14
|
resubcld |
|- ( ( ph /\ k e. X ) -> ( ( 2nd ` ( I ` k ) ) - ( 1st ` ( I ` k ) ) ) e. RR ) |
21 |
|
0red |
|- ( ( ph /\ k e. X ) -> 0 e. RR ) |
22 |
20 21
|
ifcld |
|- ( ( ph /\ k e. X ) -> if ( ( 1st ` ( I ` k ) ) < ( 2nd ` ( I ` k ) ) , ( ( 2nd ` ( I ` k ) ) - ( 1st ` ( I ` k ) ) ) , 0 ) e. RR ) |
23 |
19 22
|
eqeltrd |
|- ( ( ph /\ k e. X ) -> ( vol ` ( ( [,) o. I ) ` k ) ) e. RR ) |
24 |
1 2 23
|
fprodreclf |
|- ( ph -> prod_ k e. X ( vol ` ( ( [,) o. I ) ` k ) ) e. RR ) |
25 |
24
|
rexrd |
|- ( ph -> prod_ k e. X ( vol ` ( ( [,) o. I ) ` k ) ) e. RR* ) |
26 |
16
|
rexrd |
|- ( ( ph /\ k e. X ) -> ( 2nd ` ( I ` k ) ) e. RR* ) |
27 |
|
icombl |
|- ( ( ( 1st ` ( I ` k ) ) e. RR /\ ( 2nd ` ( I ` k ) ) e. RR* ) -> ( ( 1st ` ( I ` k ) ) [,) ( 2nd ` ( I ` k ) ) ) e. dom vol ) |
28 |
14 26 27
|
syl2anc |
|- ( ( ph /\ k e. X ) -> ( ( 1st ` ( I ` k ) ) [,) ( 2nd ` ( I ` k ) ) ) e. dom vol ) |
29 |
10 28
|
eqeltrd |
|- ( ( ph /\ k e. X ) -> ( ( [,) o. I ) ` k ) e. dom vol ) |
30 |
|
volge0 |
|- ( ( ( [,) o. I ) ` k ) e. dom vol -> 0 <_ ( vol ` ( ( [,) o. I ) ` k ) ) ) |
31 |
29 30
|
syl |
|- ( ( ph /\ k e. X ) -> 0 <_ ( vol ` ( ( [,) o. I ) ` k ) ) ) |
32 |
1 2 23 31
|
fprodge0 |
|- ( ph -> 0 <_ prod_ k e. X ( vol ` ( ( [,) o. I ) ` k ) ) ) |
33 |
24
|
ltpnfd |
|- ( ph -> prod_ k e. X ( vol ` ( ( [,) o. I ) ` k ) ) < +oo ) |
34 |
5 7 25 32 33
|
elicod |
|- ( ph -> prod_ k e. X ( vol ` ( ( [,) o. I ) ` k ) ) e. ( 0 [,) +oo ) ) |