| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hoiprodcl.1 |
|- F/ k ph |
| 2 |
|
hoiprodcl.2 |
|- ( ph -> X e. Fin ) |
| 3 |
|
hoiprodcl.3 |
|- ( ph -> I : X --> ( RR X. RR ) ) |
| 4 |
|
0xr |
|- 0 e. RR* |
| 5 |
4
|
a1i |
|- ( ph -> 0 e. RR* ) |
| 6 |
|
pnfxr |
|- +oo e. RR* |
| 7 |
6
|
a1i |
|- ( ph -> +oo e. RR* ) |
| 8 |
3
|
adantr |
|- ( ( ph /\ k e. X ) -> I : X --> ( RR X. RR ) ) |
| 9 |
|
simpr |
|- ( ( ph /\ k e. X ) -> k e. X ) |
| 10 |
8 9
|
fvovco |
|- ( ( ph /\ k e. X ) -> ( ( [,) o. I ) ` k ) = ( ( 1st ` ( I ` k ) ) [,) ( 2nd ` ( I ` k ) ) ) ) |
| 11 |
10
|
fveq2d |
|- ( ( ph /\ k e. X ) -> ( vol ` ( ( [,) o. I ) ` k ) ) = ( vol ` ( ( 1st ` ( I ` k ) ) [,) ( 2nd ` ( I ` k ) ) ) ) ) |
| 12 |
3
|
ffvelcdmda |
|- ( ( ph /\ k e. X ) -> ( I ` k ) e. ( RR X. RR ) ) |
| 13 |
|
xp1st |
|- ( ( I ` k ) e. ( RR X. RR ) -> ( 1st ` ( I ` k ) ) e. RR ) |
| 14 |
12 13
|
syl |
|- ( ( ph /\ k e. X ) -> ( 1st ` ( I ` k ) ) e. RR ) |
| 15 |
|
xp2nd |
|- ( ( I ` k ) e. ( RR X. RR ) -> ( 2nd ` ( I ` k ) ) e. RR ) |
| 16 |
12 15
|
syl |
|- ( ( ph /\ k e. X ) -> ( 2nd ` ( I ` k ) ) e. RR ) |
| 17 |
|
volico |
|- ( ( ( 1st ` ( I ` k ) ) e. RR /\ ( 2nd ` ( I ` k ) ) e. RR ) -> ( vol ` ( ( 1st ` ( I ` k ) ) [,) ( 2nd ` ( I ` k ) ) ) ) = if ( ( 1st ` ( I ` k ) ) < ( 2nd ` ( I ` k ) ) , ( ( 2nd ` ( I ` k ) ) - ( 1st ` ( I ` k ) ) ) , 0 ) ) |
| 18 |
14 16 17
|
syl2anc |
|- ( ( ph /\ k e. X ) -> ( vol ` ( ( 1st ` ( I ` k ) ) [,) ( 2nd ` ( I ` k ) ) ) ) = if ( ( 1st ` ( I ` k ) ) < ( 2nd ` ( I ` k ) ) , ( ( 2nd ` ( I ` k ) ) - ( 1st ` ( I ` k ) ) ) , 0 ) ) |
| 19 |
11 18
|
eqtrd |
|- ( ( ph /\ k e. X ) -> ( vol ` ( ( [,) o. I ) ` k ) ) = if ( ( 1st ` ( I ` k ) ) < ( 2nd ` ( I ` k ) ) , ( ( 2nd ` ( I ` k ) ) - ( 1st ` ( I ` k ) ) ) , 0 ) ) |
| 20 |
16 14
|
resubcld |
|- ( ( ph /\ k e. X ) -> ( ( 2nd ` ( I ` k ) ) - ( 1st ` ( I ` k ) ) ) e. RR ) |
| 21 |
|
0red |
|- ( ( ph /\ k e. X ) -> 0 e. RR ) |
| 22 |
20 21
|
ifcld |
|- ( ( ph /\ k e. X ) -> if ( ( 1st ` ( I ` k ) ) < ( 2nd ` ( I ` k ) ) , ( ( 2nd ` ( I ` k ) ) - ( 1st ` ( I ` k ) ) ) , 0 ) e. RR ) |
| 23 |
19 22
|
eqeltrd |
|- ( ( ph /\ k e. X ) -> ( vol ` ( ( [,) o. I ) ` k ) ) e. RR ) |
| 24 |
1 2 23
|
fprodreclf |
|- ( ph -> prod_ k e. X ( vol ` ( ( [,) o. I ) ` k ) ) e. RR ) |
| 25 |
24
|
rexrd |
|- ( ph -> prod_ k e. X ( vol ` ( ( [,) o. I ) ` k ) ) e. RR* ) |
| 26 |
16
|
rexrd |
|- ( ( ph /\ k e. X ) -> ( 2nd ` ( I ` k ) ) e. RR* ) |
| 27 |
|
icombl |
|- ( ( ( 1st ` ( I ` k ) ) e. RR /\ ( 2nd ` ( I ` k ) ) e. RR* ) -> ( ( 1st ` ( I ` k ) ) [,) ( 2nd ` ( I ` k ) ) ) e. dom vol ) |
| 28 |
14 26 27
|
syl2anc |
|- ( ( ph /\ k e. X ) -> ( ( 1st ` ( I ` k ) ) [,) ( 2nd ` ( I ` k ) ) ) e. dom vol ) |
| 29 |
10 28
|
eqeltrd |
|- ( ( ph /\ k e. X ) -> ( ( [,) o. I ) ` k ) e. dom vol ) |
| 30 |
|
volge0 |
|- ( ( ( [,) o. I ) ` k ) e. dom vol -> 0 <_ ( vol ` ( ( [,) o. I ) ` k ) ) ) |
| 31 |
29 30
|
syl |
|- ( ( ph /\ k e. X ) -> 0 <_ ( vol ` ( ( [,) o. I ) ` k ) ) ) |
| 32 |
1 2 23 31
|
fprodge0 |
|- ( ph -> 0 <_ prod_ k e. X ( vol ` ( ( [,) o. I ) ` k ) ) ) |
| 33 |
24
|
ltpnfd |
|- ( ph -> prod_ k e. X ( vol ` ( ( [,) o. I ) ` k ) ) < +oo ) |
| 34 |
5 7 25 32 33
|
elicod |
|- ( ph -> prod_ k e. X ( vol ` ( ( [,) o. I ) ` k ) ) e. ( 0 [,) +oo ) ) |