Step |
Hyp |
Ref |
Expression |
1 |
|
hoiprodcl.1 |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
hoiprodcl.2 |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
3 |
|
hoiprodcl.3 |
⊢ ( 𝜑 → 𝐼 : 𝑋 ⟶ ( ℝ × ℝ ) ) |
4 |
|
0xr |
⊢ 0 ∈ ℝ* |
5 |
4
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℝ* ) |
6 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
7 |
6
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
8 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐼 : 𝑋 ⟶ ( ℝ × ℝ ) ) |
9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝑘 ∈ 𝑋 ) |
10 |
8 9
|
fvovco |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) = ( ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) [,) ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) ) ) |
11 |
10
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ) = ( vol ‘ ( ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) [,) ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) ) ) ) |
12 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐼 ‘ 𝑘 ) ∈ ( ℝ × ℝ ) ) |
13 |
|
xp1st |
⊢ ( ( 𝐼 ‘ 𝑘 ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) ∈ ℝ ) |
14 |
12 13
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) ∈ ℝ ) |
15 |
|
xp2nd |
⊢ ( ( 𝐼 ‘ 𝑘 ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) ∈ ℝ ) |
16 |
12 15
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) ∈ ℝ ) |
17 |
|
volico |
⊢ ( ( ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) ∈ ℝ ) → ( vol ‘ ( ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) [,) ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) ) ) = if ( ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) < ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) , ( ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) − ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) ) , 0 ) ) |
18 |
14 16 17
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) [,) ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) ) ) = if ( ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) < ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) , ( ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) − ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) ) , 0 ) ) |
19 |
11 18
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ) = if ( ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) < ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) , ( ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) − ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) ) , 0 ) ) |
20 |
16 14
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) − ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) ) ∈ ℝ ) |
21 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 0 ∈ ℝ ) |
22 |
20 21
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → if ( ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) < ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) , ( ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) − ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) ) , 0 ) ∈ ℝ ) |
23 |
19 22
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ) ∈ ℝ ) |
24 |
1 2 23
|
fprodreclf |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ) ∈ ℝ ) |
25 |
24
|
rexrd |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ) ∈ ℝ* ) |
26 |
16
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) ∈ ℝ* ) |
27 |
|
icombl |
⊢ ( ( ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) ∈ ℝ* ) → ( ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) [,) ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) ) ∈ dom vol ) |
28 |
14 26 27
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) [,) ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) ) ∈ dom vol ) |
29 |
10 28
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ∈ dom vol ) |
30 |
|
volge0 |
⊢ ( ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ∈ dom vol → 0 ≤ ( vol ‘ ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ) ) |
31 |
29 30
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 0 ≤ ( vol ‘ ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ) ) |
32 |
1 2 23 31
|
fprodge0 |
⊢ ( 𝜑 → 0 ≤ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ) ) |
33 |
24
|
ltpnfd |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ) < +∞ ) |
34 |
5 7 25 32 33
|
elicod |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ) ∈ ( 0 [,) +∞ ) ) |