| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoiprodcl.1 | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 2 |  | hoiprodcl.2 | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 3 |  | hoiprodcl.3 | ⊢ ( 𝜑  →  𝐼 : 𝑋 ⟶ ( ℝ  ×  ℝ ) ) | 
						
							| 4 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 5 | 4 | a1i | ⊢ ( 𝜑  →  0  ∈  ℝ* ) | 
						
							| 6 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 7 | 6 | a1i | ⊢ ( 𝜑  →  +∞  ∈  ℝ* ) | 
						
							| 8 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  𝐼 : 𝑋 ⟶ ( ℝ  ×  ℝ ) ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  𝑘  ∈  𝑋 ) | 
						
							| 10 | 8 9 | fvovco | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( ( [,)  ∘  𝐼 ) ‘ 𝑘 )  =  ( ( 1st  ‘ ( 𝐼 ‘ 𝑘 ) ) [,) ( 2nd  ‘ ( 𝐼 ‘ 𝑘 ) ) ) ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( vol ‘ ( ( [,)  ∘  𝐼 ) ‘ 𝑘 ) )  =  ( vol ‘ ( ( 1st  ‘ ( 𝐼 ‘ 𝑘 ) ) [,) ( 2nd  ‘ ( 𝐼 ‘ 𝑘 ) ) ) ) ) | 
						
							| 12 | 3 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐼 ‘ 𝑘 )  ∈  ( ℝ  ×  ℝ ) ) | 
						
							| 13 |  | xp1st | ⊢ ( ( 𝐼 ‘ 𝑘 )  ∈  ( ℝ  ×  ℝ )  →  ( 1st  ‘ ( 𝐼 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 1st  ‘ ( 𝐼 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 15 |  | xp2nd | ⊢ ( ( 𝐼 ‘ 𝑘 )  ∈  ( ℝ  ×  ℝ )  →  ( 2nd  ‘ ( 𝐼 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 16 | 12 15 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 2nd  ‘ ( 𝐼 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 17 |  | volico | ⊢ ( ( ( 1st  ‘ ( 𝐼 ‘ 𝑘 ) )  ∈  ℝ  ∧  ( 2nd  ‘ ( 𝐼 ‘ 𝑘 ) )  ∈  ℝ )  →  ( vol ‘ ( ( 1st  ‘ ( 𝐼 ‘ 𝑘 ) ) [,) ( 2nd  ‘ ( 𝐼 ‘ 𝑘 ) ) ) )  =  if ( ( 1st  ‘ ( 𝐼 ‘ 𝑘 ) )  <  ( 2nd  ‘ ( 𝐼 ‘ 𝑘 ) ) ,  ( ( 2nd  ‘ ( 𝐼 ‘ 𝑘 ) )  −  ( 1st  ‘ ( 𝐼 ‘ 𝑘 ) ) ) ,  0 ) ) | 
						
							| 18 | 14 16 17 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( vol ‘ ( ( 1st  ‘ ( 𝐼 ‘ 𝑘 ) ) [,) ( 2nd  ‘ ( 𝐼 ‘ 𝑘 ) ) ) )  =  if ( ( 1st  ‘ ( 𝐼 ‘ 𝑘 ) )  <  ( 2nd  ‘ ( 𝐼 ‘ 𝑘 ) ) ,  ( ( 2nd  ‘ ( 𝐼 ‘ 𝑘 ) )  −  ( 1st  ‘ ( 𝐼 ‘ 𝑘 ) ) ) ,  0 ) ) | 
						
							| 19 | 11 18 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( vol ‘ ( ( [,)  ∘  𝐼 ) ‘ 𝑘 ) )  =  if ( ( 1st  ‘ ( 𝐼 ‘ 𝑘 ) )  <  ( 2nd  ‘ ( 𝐼 ‘ 𝑘 ) ) ,  ( ( 2nd  ‘ ( 𝐼 ‘ 𝑘 ) )  −  ( 1st  ‘ ( 𝐼 ‘ 𝑘 ) ) ) ,  0 ) ) | 
						
							| 20 | 16 14 | resubcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( ( 2nd  ‘ ( 𝐼 ‘ 𝑘 ) )  −  ( 1st  ‘ ( 𝐼 ‘ 𝑘 ) ) )  ∈  ℝ ) | 
						
							| 21 |  | 0red | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  0  ∈  ℝ ) | 
						
							| 22 | 20 21 | ifcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  if ( ( 1st  ‘ ( 𝐼 ‘ 𝑘 ) )  <  ( 2nd  ‘ ( 𝐼 ‘ 𝑘 ) ) ,  ( ( 2nd  ‘ ( 𝐼 ‘ 𝑘 ) )  −  ( 1st  ‘ ( 𝐼 ‘ 𝑘 ) ) ) ,  0 )  ∈  ℝ ) | 
						
							| 23 | 19 22 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( vol ‘ ( ( [,)  ∘  𝐼 ) ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 24 | 1 2 23 | fprodreclf | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( ( [,)  ∘  𝐼 ) ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 25 | 24 | rexrd | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( ( [,)  ∘  𝐼 ) ‘ 𝑘 ) )  ∈  ℝ* ) | 
						
							| 26 | 16 | rexrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 2nd  ‘ ( 𝐼 ‘ 𝑘 ) )  ∈  ℝ* ) | 
						
							| 27 |  | icombl | ⊢ ( ( ( 1st  ‘ ( 𝐼 ‘ 𝑘 ) )  ∈  ℝ  ∧  ( 2nd  ‘ ( 𝐼 ‘ 𝑘 ) )  ∈  ℝ* )  →  ( ( 1st  ‘ ( 𝐼 ‘ 𝑘 ) ) [,) ( 2nd  ‘ ( 𝐼 ‘ 𝑘 ) ) )  ∈  dom  vol ) | 
						
							| 28 | 14 26 27 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( ( 1st  ‘ ( 𝐼 ‘ 𝑘 ) ) [,) ( 2nd  ‘ ( 𝐼 ‘ 𝑘 ) ) )  ∈  dom  vol ) | 
						
							| 29 | 10 28 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( ( [,)  ∘  𝐼 ) ‘ 𝑘 )  ∈  dom  vol ) | 
						
							| 30 |  | volge0 | ⊢ ( ( ( [,)  ∘  𝐼 ) ‘ 𝑘 )  ∈  dom  vol  →  0  ≤  ( vol ‘ ( ( [,)  ∘  𝐼 ) ‘ 𝑘 ) ) ) | 
						
							| 31 | 29 30 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  0  ≤  ( vol ‘ ( ( [,)  ∘  𝐼 ) ‘ 𝑘 ) ) ) | 
						
							| 32 | 1 2 23 31 | fprodge0 | ⊢ ( 𝜑  →  0  ≤  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( ( [,)  ∘  𝐼 ) ‘ 𝑘 ) ) ) | 
						
							| 33 | 24 | ltpnfd | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( ( [,)  ∘  𝐼 ) ‘ 𝑘 ) )  <  +∞ ) | 
						
							| 34 | 5 7 25 32 33 | elicod | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( ( [,)  ∘  𝐼 ) ‘ 𝑘 ) )  ∈  ( 0 [,) +∞ ) ) |