| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hoiprodcl.1 |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
hoiprodcl.2 |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 3 |
|
hoiprodcl.3 |
⊢ ( 𝜑 → 𝐼 : 𝑋 ⟶ ( ℝ × ℝ ) ) |
| 4 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 5 |
4
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℝ* ) |
| 6 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
| 8 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐼 : 𝑋 ⟶ ( ℝ × ℝ ) ) |
| 9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝑘 ∈ 𝑋 ) |
| 10 |
8 9
|
fvovco |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) = ( ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) [,) ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) ) ) |
| 11 |
10
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ) = ( vol ‘ ( ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) [,) ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) ) ) ) |
| 12 |
3
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐼 ‘ 𝑘 ) ∈ ( ℝ × ℝ ) ) |
| 13 |
|
xp1st |
⊢ ( ( 𝐼 ‘ 𝑘 ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) ∈ ℝ ) |
| 14 |
12 13
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) ∈ ℝ ) |
| 15 |
|
xp2nd |
⊢ ( ( 𝐼 ‘ 𝑘 ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) ∈ ℝ ) |
| 16 |
12 15
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) ∈ ℝ ) |
| 17 |
|
volico |
⊢ ( ( ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) ∈ ℝ ) → ( vol ‘ ( ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) [,) ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) ) ) = if ( ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) < ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) , ( ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) − ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) ) , 0 ) ) |
| 18 |
14 16 17
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) [,) ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) ) ) = if ( ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) < ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) , ( ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) − ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) ) , 0 ) ) |
| 19 |
11 18
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ) = if ( ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) < ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) , ( ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) − ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) ) , 0 ) ) |
| 20 |
16 14
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) − ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 21 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 0 ∈ ℝ ) |
| 22 |
20 21
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → if ( ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) < ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) , ( ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) − ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) ) , 0 ) ∈ ℝ ) |
| 23 |
19 22
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ) ∈ ℝ ) |
| 24 |
1 2 23
|
fprodreclf |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ) ∈ ℝ ) |
| 25 |
24
|
rexrd |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ) ∈ ℝ* ) |
| 26 |
16
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) ∈ ℝ* ) |
| 27 |
|
icombl |
⊢ ( ( ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) ∈ ℝ* ) → ( ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) [,) ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) ) ∈ dom vol ) |
| 28 |
14 26 27
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) [,) ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) ) ∈ dom vol ) |
| 29 |
10 28
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ∈ dom vol ) |
| 30 |
|
volge0 |
⊢ ( ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ∈ dom vol → 0 ≤ ( vol ‘ ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ) ) |
| 31 |
29 30
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 0 ≤ ( vol ‘ ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ) ) |
| 32 |
1 2 23 31
|
fprodge0 |
⊢ ( 𝜑 → 0 ≤ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ) ) |
| 33 |
24
|
ltpnfd |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ) < +∞ ) |
| 34 |
5 7 25 32 33
|
elicod |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ) ∈ ( 0 [,) +∞ ) ) |