| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hoiprodcl.1 |
|
| 2 |
|
hoiprodcl.2 |
|
| 3 |
|
hoiprodcl.3 |
|
| 4 |
|
0xr |
|
| 5 |
4
|
a1i |
|
| 6 |
|
pnfxr |
|
| 7 |
6
|
a1i |
|
| 8 |
3
|
adantr |
|
| 9 |
|
simpr |
|
| 10 |
8 9
|
fvovco |
|
| 11 |
10
|
fveq2d |
|
| 12 |
3
|
ffvelcdmda |
|
| 13 |
|
xp1st |
|
| 14 |
12 13
|
syl |
|
| 15 |
|
xp2nd |
|
| 16 |
12 15
|
syl |
|
| 17 |
|
volico |
|
| 18 |
14 16 17
|
syl2anc |
|
| 19 |
11 18
|
eqtrd |
|
| 20 |
16 14
|
resubcld |
|
| 21 |
|
0red |
|
| 22 |
20 21
|
ifcld |
|
| 23 |
19 22
|
eqeltrd |
|
| 24 |
1 2 23
|
fprodreclf |
|
| 25 |
24
|
rexrd |
|
| 26 |
16
|
rexrd |
|
| 27 |
|
icombl |
|
| 28 |
14 26 27
|
syl2anc |
|
| 29 |
10 28
|
eqeltrd |
|
| 30 |
|
volge0 |
|
| 31 |
29 30
|
syl |
|
| 32 |
1 2 23 31
|
fprodge0 |
|
| 33 |
24
|
ltpnfd |
|
| 34 |
5 7 25 32 33
|
elicod |
|