Metamath Proof Explorer


Theorem hoiprodcl

Description: The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses hoiprodcl.1 k φ
hoiprodcl.2 φ X Fin
hoiprodcl.3 φ I : X 2
Assertion hoiprodcl φ k X vol . I k 0 +∞

Proof

Step Hyp Ref Expression
1 hoiprodcl.1 k φ
2 hoiprodcl.2 φ X Fin
3 hoiprodcl.3 φ I : X 2
4 0xr 0 *
5 4 a1i φ 0 *
6 pnfxr +∞ *
7 6 a1i φ +∞ *
8 3 adantr φ k X I : X 2
9 simpr φ k X k X
10 8 9 fvovco φ k X . I k = 1 st I k 2 nd I k
11 10 fveq2d φ k X vol . I k = vol 1 st I k 2 nd I k
12 3 ffvelrnda φ k X I k 2
13 xp1st I k 2 1 st I k
14 12 13 syl φ k X 1 st I k
15 xp2nd I k 2 2 nd I k
16 12 15 syl φ k X 2 nd I k
17 volico 1 st I k 2 nd I k vol 1 st I k 2 nd I k = if 1 st I k < 2 nd I k 2 nd I k 1 st I k 0
18 14 16 17 syl2anc φ k X vol 1 st I k 2 nd I k = if 1 st I k < 2 nd I k 2 nd I k 1 st I k 0
19 11 18 eqtrd φ k X vol . I k = if 1 st I k < 2 nd I k 2 nd I k 1 st I k 0
20 16 14 resubcld φ k X 2 nd I k 1 st I k
21 0red φ k X 0
22 20 21 ifcld φ k X if 1 st I k < 2 nd I k 2 nd I k 1 st I k 0
23 19 22 eqeltrd φ k X vol . I k
24 1 2 23 fprodreclf φ k X vol . I k
25 24 rexrd φ k X vol . I k *
26 16 rexrd φ k X 2 nd I k *
27 icombl 1 st I k 2 nd I k * 1 st I k 2 nd I k dom vol
28 14 26 27 syl2anc φ k X 1 st I k 2 nd I k dom vol
29 10 28 eqeltrd φ k X . I k dom vol
30 volge0 . I k dom vol 0 vol . I k
31 29 30 syl φ k X 0 vol . I k
32 1 2 23 31 fprodge0 φ 0 k X vol . I k
33 24 ltpnfd φ k X vol . I k < +∞
34 5 7 25 32 33 elicod φ k X vol . I k 0 +∞