Metamath Proof Explorer


Theorem hoicvr

Description: I is a countable set of half-open intervals that covers the whole multidimensional reals. See Definition 1135 (b) of Fremlin1 p. 29. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses hoicvr.2 I = j x X j j
hoicvr.3 φ X Fin
Assertion hoicvr φ X j i X . I j i

Proof

Step Hyp Ref Expression
1 hoicvr.2 I = j x X j j
2 hoicvr.3 φ X Fin
3 reex V
4 mapdm0 V =
5 3 4 ax-mp =
6 5 a1i X = =
7 oveq2 X = X =
8 ixpeq1 X = i X . I j i = i . I j i
9 8 iuneq2d X = j i X . I j i = j i . I j i
10 ixp0x i . I j i =
11 10 a1i j i . I j i =
12 11 iuneq2i j i . I j i = j
13 1nn 1
14 13 ne0ii
15 iunconst j =
16 14 15 ax-mp j =
17 12 16 eqtri j i . I j i =
18 17 a1i X = j i . I j i =
19 9 18 eqtrd X = j i X . I j i =
20 6 7 19 3eqtr4d X = X = j i X . I j i
21 eqimss X = j i X . I j i X j i X . I j i
22 20 21 syl X = X j i X . I j i
23 22 adantl φ X = X j i X . I j i
24 simpll φ ¬ X = f X φ
25 simpr φ ¬ X = f X f X
26 simplr φ ¬ X = f X ¬ X =
27 rncoss ran abs f ran abs
28 absf abs :
29 frn abs : ran abs
30 28 29 ax-mp ran abs
31 27 30 sstri ran abs f
32 31 a1i φ f X ¬ X = ran abs f
33 ltso < Or
34 33 a1i φ f X ¬ X = < Or
35 28 a1i φ f X abs :
36 elmapi f X f : X
37 36 adantl φ f X f : X
38 ax-resscn
39 38 a1i φ f X
40 37 39 fssd φ f X f : X
41 fco abs : f : X abs f : X
42 35 40 41 syl2anc φ f X abs f : X
43 2 adantr φ f X X Fin
44 rnffi abs f : X X Fin ran abs f Fin
45 42 43 44 syl2anc φ f X ran abs f Fin
46 45 adantr φ f X ¬ X = ran abs f Fin
47 36 frnd f X ran f
48 28 fdmi dom abs =
49 48 eqcomi = dom abs
50 38 49 sseqtri dom abs
51 50 a1i f X dom abs
52 47 51 sstrd f X ran f dom abs
53 dmcosseq ran f dom abs dom abs f = dom f
54 52 53 syl f X dom abs f = dom f
55 36 fdmd f X dom f = X
56 54 55 eqtrd f X dom abs f = X
57 56 adantr f X ¬ X = dom abs f = X
58 neqne ¬ X = X
59 58 adantl f X ¬ X = X
60 57 59 eqnetrd f X ¬ X = dom abs f
61 60 neneqd f X ¬ X = ¬ dom abs f =
62 dm0rn0 dom abs f = ran abs f =
63 61 62 sylnib f X ¬ X = ¬ ran abs f =
64 63 neqned f X ¬ X = ran abs f
65 64 adantll φ f X ¬ X = ran abs f
66 fisupcl < Or ran abs f Fin ran abs f ran abs f sup ran abs f < ran abs f
67 34 46 65 32 66 syl13anc φ f X ¬ X = sup ran abs f < ran abs f
68 32 67 sseldd φ f X ¬ X = sup ran abs f <
69 arch sup ran abs f < j sup ran abs f < < j
70 68 69 syl φ f X ¬ X = j sup ran abs f < < j
71 37 ffnd φ f X f Fn X
72 71 ad2antrr φ f X ¬ X = sup ran abs f < < j f Fn X
73 72 adantlr φ f X ¬ X = j sup ran abs f < < j f Fn X
74 simplll φ f X j sup ran abs f < < j i X φ f X
75 id j j
76 75 ad3antlr φ f X j sup ran abs f < < j i X j
77 simplr φ f X j sup ran abs f < < j i X sup ran abs f < < j
78 simpr φ f X j sup ran abs f < < j i X i X
79 simp2 φ f X j sup ran abs f < < j j
80 zssre
81 ressxr *
82 80 81 sstri *
83 nnnegz j j
84 82 83 sselid j j *
85 84 adantr j i X j *
86 79 85 sylan φ f X j sup ran abs f < < j i X j *
87 75 nnxrd j j *
88 87 adantr j i X j *
89 79 88 sylan φ f X j sup ran abs f < < j i X j *
90 36 3ad2ant1 f X j sup ran abs f < < j f : X
91 81 a1i f X j sup ran abs f < < j *
92 90 91 fssd f X j sup ran abs f < < j f : X *
93 92 3adant1l φ f X j sup ran abs f < < j f : X *
94 93 ffvelrnda φ f X j sup ran abs f < < j i X f i *
95 nnre j j
96 95 adantr j i X j
97 96 3ad2antl2 φ f X j sup ran abs f < < j i X j
98 97 renegcld φ f X j sup ran abs f < < j i X j
99 37 ffvelrnda φ f X i X f i
100 99 3ad2antl1 φ f X j sup ran abs f < < j i X f i
101 100 renegcld φ f X j sup ran abs f < < j i X f i
102 simpll φ f X i X φ
103 simplr φ f X i X f X
104 n0i i X ¬ X =
105 104 adantl φ f X i X ¬ X =
106 102 103 105 68 syl21anc φ f X i X sup ran abs f <
107 106 3ad2antl1 φ f X j sup ran abs f < < j i X sup ran abs f <
108 36 ffvelrnda f X i X f i
109 38 108 sselid f X i X f i
110 109 abscld f X i X f i
111 110 adantll φ f X i X f i
112 111 3ad2antl1 φ f X j sup ran abs f < < j i X f i
113 108 renegcld f X i X f i
114 113 leabsd f X i X f i f i
115 109 absnegd f X i X f i = f i
116 114 115 breqtrd f X i X f i f i
117 116 adantll φ f X i X f i f i
118 117 3ad2antl1 φ f X j sup ran abs f < < j i X f i f i
119 31 a1i φ f X j sup ran abs f < < j i X ran abs f
120 105 65 syldan φ f X i X ran abs f
121 120 3ad2antl1 φ f X j sup ran abs f < < j i X ran abs f
122 fimaxre2 ran abs f ran abs f Fin y z ran abs f z y
123 31 45 122 sylancr φ f X y z ran abs f z y
124 123 adantr φ f X i X y z ran abs f z y
125 124 3ad2antl1 φ f X j sup ran abs f < < j i X y z ran abs f z y
126 elmapfun f X Fun f
127 126 adantr f X i X Fun f
128 simpr f X i X i X
129 55 eqcomd f X X = dom f
130 129 adantr f X i X X = dom f
131 128 130 eleqtrd f X i X i dom f
132 fvco Fun f i dom f abs f i = f i
133 127 131 132 syl2anc f X i X abs f i = f i
134 133 eqcomd f X i X f i = abs f i
135 absfun Fun abs
136 135 a1i f X Fun abs
137 funco Fun abs Fun f Fun abs f
138 136 126 137 syl2anc f X Fun abs f
139 138 adantr f X i X Fun abs f
140 109 49 eleqtrdi f X i X f i dom abs
141 dmfco Fun f i dom f i dom abs f f i dom abs
142 127 131 141 syl2anc f X i X i dom abs f f i dom abs
143 140 142 mpbird f X i X i dom abs f
144 fvelrn Fun abs f i dom abs f abs f i ran abs f
145 139 143 144 syl2anc f X i X abs f i ran abs f
146 134 145 eqeltrd f X i X f i ran abs f
147 146 adantll φ f X i X f i ran abs f
148 147 3ad2antl1 φ f X j sup ran abs f < < j i X f i ran abs f
149 suprub ran abs f ran abs f y z ran abs f z y f i ran abs f f i sup ran abs f <
150 119 121 125 148 149 syl31anc φ f X j sup ran abs f < < j i X f i sup ran abs f <
151 101 112 107 118 150 letrd φ f X j sup ran abs f < < j i X f i sup ran abs f <
152 simpl3 φ f X j sup ran abs f < < j i X sup ran abs f < < j
153 101 107 97 151 152 lelttrd φ f X j sup ran abs f < < j i X f i < j
154 101 97 ltnegd φ f X j sup ran abs f < < j i X f i < j j < f i
155 153 154 mpbid φ f X j sup ran abs f < < j i X j < f i
156 38 100 sselid φ f X j sup ran abs f < < j i X f i
157 156 negnegd φ f X j sup ran abs f < < j i X f i = f i
158 155 157 breqtrd φ f X j sup ran abs f < < j i X j < f i
159 98 100 158 ltled φ f X j sup ran abs f < < j i X j f i
160 100 leabsd φ f X j sup ran abs f < < j i X f i f i
161 100 112 107 160 150 letrd φ f X j sup ran abs f < < j i X f i sup ran abs f <
162 100 107 97 161 152 lelttrd φ f X j sup ran abs f < < j i X f i < j
163 86 89 94 159 162 elicod φ f X j sup ran abs f < < j i X f i j j
164 74 76 77 78 163 syl31anc φ f X j sup ran abs f < < j i X f i j j
165 164 adantl3r φ f X ¬ X = j sup ran abs f < < j i X f i j j
166 simpr φ j j
167 mptexg X Fin x X j j V
168 2 167 syl φ x X j j V
169 168 adantr φ j x X j j V
170 1 fvmpt2 j x X j j V I j = x X j j
171 166 169 170 syl2anc φ j I j = x X j j
172 171 fveq1d φ j I j i = x X j j i
173 172 3adant3 φ j i X I j i = x X j j i
174 eqidd i X x X j j = x X j j
175 eqid j j = j j
176 175 a1i i X x = i j j = j j
177 id i X i X
178 opex j j V
179 178 a1i i X j j V
180 174 176 177 179 fvmptd i X x X j j i = j j
181 180 3ad2ant3 φ j i X x X j j i = j j
182 173 181 eqtrd φ j i X I j i = j j
183 182 fveq2d φ j i X 1 st I j i = 1 st j j
184 negex j V
185 vex j V
186 184 185 op1st 1 st j j = j
187 186 a1i φ j i X 1 st j j = j
188 183 187 eqtrd φ j i X 1 st I j i = j
189 182 fveq2d φ j i X 2 nd I j i = 2 nd j j
190 184 185 op2nd 2 nd j j = j
191 190 a1i φ j i X 2 nd j j = j
192 189 191 eqtrd φ j i X 2 nd I j i = j
193 188 192 oveq12d φ j i X 1 st I j i 2 nd I j i = j j
194 193 eqcomd φ j i X j j = 1 st I j i 2 nd I j i
195 194 3adant1r φ f X j i X j j = 1 st I j i 2 nd I j i
196 195 ad5ant135 φ f X ¬ X = j sup ran abs f < < j i X j j = 1 st I j i 2 nd I j i
197 165 196 eleqtrd φ f X ¬ X = j sup ran abs f < < j i X f i 1 st I j i 2 nd I j i
198 80 83 sselid j j
199 opelxpi j j j j 2
200 198 95 199 syl2anc j j j 2
201 200 ad2antlr φ j x X j j 2
202 eqid x X j j = x X j j
203 201 202 fmptd φ j x X j j : X 2
204 171 feq1d φ j I j : X 2 x X j j : X 2
205 203 204 mpbird φ j I j : X 2
206 205 ad4ant14 φ f X ¬ X = j I j : X 2
207 206 ad2antrr φ f X ¬ X = j sup ran abs f < < j i X I j : X 2
208 simpr φ f X ¬ X = j sup ran abs f < < j i X i X
209 207 208 fvovco φ f X ¬ X = j sup ran abs f < < j i X . I j i = 1 st I j i 2 nd I j i
210 209 eqcomd φ f X ¬ X = j sup ran abs f < < j i X 1 st I j i 2 nd I j i = . I j i
211 197 210 eleqtrd φ f X ¬ X = j sup ran abs f < < j i X f i . I j i
212 211 ralrimiva φ f X ¬ X = j sup ran abs f < < j i X f i . I j i
213 73 212 jca φ f X ¬ X = j sup ran abs f < < j f Fn X i X f i . I j i
214 vex f V
215 214 elixp f i X . I j i f Fn X i X f i . I j i
216 213 215 sylibr φ f X ¬ X = j sup ran abs f < < j f i X . I j i
217 216 ex φ f X ¬ X = j sup ran abs f < < j f i X . I j i
218 217 reximdva φ f X ¬ X = j sup ran abs f < < j j f i X . I j i
219 70 218 mpd φ f X ¬ X = j f i X . I j i
220 24 25 26 219 syl21anc φ ¬ X = f X j f i X . I j i
221 eliun f j i X . I j i j f i X . I j i
222 220 221 sylibr φ ¬ X = f X f j i X . I j i
223 222 ralrimiva φ ¬ X = f X f j i X . I j i
224 dfss3 X j i X . I j i f X f j i X . I j i
225 223 224 sylibr φ ¬ X = X j i X . I j i
226 23 225 pm2.61dan φ X j i X . I j i