Metamath Proof Explorer


Theorem hoissrrn

Description: A half-open interval is a subset of R^n . (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypothesis hoissrrn.1 φ I : X 2
Assertion hoissrrn φ k X . I k X

Proof

Step Hyp Ref Expression
1 hoissrrn.1 φ I : X 2
2 fvex . I k V
3 2 rgenw k X . I k V
4 ixpssmapg k X . I k V k X . I k k X . I k X
5 3 4 ax-mp k X . I k k X . I k X
6 5 a1i φ k X . I k k X . I k X
7 reex V
8 7 a1i φ V
9 1 hoissre φ k X . I k
10 9 ralrimiva φ k X . I k
11 iunss k X . I k k X . I k
12 10 11 sylibr φ k X . I k
13 mapss V k X . I k k X . I k X X
14 8 12 13 syl2anc φ k X . I k X X
15 6 14 sstrd φ k X . I k X