Metamath Proof Explorer


Theorem hoissrrn

Description: A half-open interval is a subset of R^n . (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypothesis hoissrrn.1 φI:X2
Assertion hoissrrn φkX.IkX

Proof

Step Hyp Ref Expression
1 hoissrrn.1 φI:X2
2 fvex .IkV
3 2 rgenw kX.IkV
4 ixpssmapg kX.IkVkX.IkkX.IkX
5 3 4 ax-mp kX.IkkX.IkX
6 5 a1i φkX.IkkX.IkX
7 reex V
8 7 a1i φV
9 1 hoissre φkX.Ik
10 9 ralrimiva φkX.Ik
11 iunss kX.IkkX.Ik
12 10 11 sylibr φkX.Ik
13 mapss VkX.IkkX.IkXX
14 8 12 13 syl2anc φkX.IkXX
15 6 14 sstrd φkX.IkX