| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hoissrrn.1 |
⊢ ( 𝜑 → 𝐼 : 𝑋 ⟶ ( ℝ × ℝ ) ) |
| 2 |
|
fvex |
⊢ ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ∈ V |
| 3 |
2
|
rgenw |
⊢ ∀ 𝑘 ∈ 𝑋 ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ∈ V |
| 4 |
|
ixpssmapg |
⊢ ( ∀ 𝑘 ∈ 𝑋 ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ∈ V → X 𝑘 ∈ 𝑋 ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ⊆ ( ∪ 𝑘 ∈ 𝑋 ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ↑m 𝑋 ) ) |
| 5 |
3 4
|
ax-mp |
⊢ X 𝑘 ∈ 𝑋 ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ⊆ ( ∪ 𝑘 ∈ 𝑋 ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ↑m 𝑋 ) |
| 6 |
5
|
a1i |
⊢ ( 𝜑 → X 𝑘 ∈ 𝑋 ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ⊆ ( ∪ 𝑘 ∈ 𝑋 ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ↑m 𝑋 ) ) |
| 7 |
|
reex |
⊢ ℝ ∈ V |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
| 9 |
1
|
hoissre |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ⊆ ℝ ) |
| 10 |
9
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑋 ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ⊆ ℝ ) |
| 11 |
|
iunss |
⊢ ( ∪ 𝑘 ∈ 𝑋 ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ⊆ ℝ ↔ ∀ 𝑘 ∈ 𝑋 ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ⊆ ℝ ) |
| 12 |
10 11
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑘 ∈ 𝑋 ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ⊆ ℝ ) |
| 13 |
|
mapss |
⊢ ( ( ℝ ∈ V ∧ ∪ 𝑘 ∈ 𝑋 ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ⊆ ℝ ) → ( ∪ 𝑘 ∈ 𝑋 ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ↑m 𝑋 ) ⊆ ( ℝ ↑m 𝑋 ) ) |
| 14 |
8 12 13
|
syl2anc |
⊢ ( 𝜑 → ( ∪ 𝑘 ∈ 𝑋 ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ↑m 𝑋 ) ⊆ ( ℝ ↑m 𝑋 ) ) |
| 15 |
6 14
|
sstrd |
⊢ ( 𝜑 → X 𝑘 ∈ 𝑋 ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ⊆ ( ℝ ↑m 𝑋 ) ) |