Metamath Proof Explorer


Theorem ovn0val

Description: The Lebesgue outer measure (for the zero dimensional space of reals) of every subset is zero. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypothesis ovn0val.1 ( 𝜑𝐴 ⊆ ( ℝ ↑m ∅ ) )
Assertion ovn0val ( 𝜑 → ( ( voln* ‘ ∅ ) ‘ 𝐴 ) = 0 )

Proof

Step Hyp Ref Expression
1 ovn0val.1 ( 𝜑𝐴 ⊆ ( ℝ ↑m ∅ ) )
2 0fin ∅ ∈ Fin
3 2 a1i ( 𝜑 → ∅ ∈ Fin )
4 eqid { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m ∅ ) ↑m ℕ ) ( 𝐴 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ ∅ ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } = { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m ∅ ) ↑m ℕ ) ( 𝐴 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ ∅ ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) }
5 3 1 4 ovnval2 ( 𝜑 → ( ( voln* ‘ ∅ ) ‘ 𝐴 ) = if ( ∅ = ∅ , 0 , inf ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m ∅ ) ↑m ℕ ) ( 𝐴 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ ∅ ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } , ℝ* , < ) ) )
6 eqid ∅ = ∅
7 iftrue ( ∅ = ∅ → if ( ∅ = ∅ , 0 , inf ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m ∅ ) ↑m ℕ ) ( 𝐴 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ ∅ ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } , ℝ* , < ) ) = 0 )
8 6 7 ax-mp if ( ∅ = ∅ , 0 , inf ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m ∅ ) ↑m ℕ ) ( 𝐴 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ ∅ ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } , ℝ* , < ) ) = 0
9 8 a1i ( 𝜑 → if ( ∅ = ∅ , 0 , inf ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m ∅ ) ↑m ℕ ) ( 𝐴 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ ∅ ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } , ℝ* , < ) ) = 0 )
10 5 9 eqtrd ( 𝜑 → ( ( voln* ‘ ∅ ) ‘ 𝐴 ) = 0 )