Step |
Hyp |
Ref |
Expression |
1 |
|
ovn0val.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ( ℝ ↑m ∅ ) ) |
2 |
|
0fin |
⊢ ∅ ∈ Fin |
3 |
2
|
a1i |
⊢ ( 𝜑 → ∅ ∈ Fin ) |
4 |
|
eqid |
⊢ { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m ∅ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ ∅ ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } = { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m ∅ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ ∅ ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } |
5 |
3 1 4
|
ovnval2 |
⊢ ( 𝜑 → ( ( voln* ‘ ∅ ) ‘ 𝐴 ) = if ( ∅ = ∅ , 0 , inf ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m ∅ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ ∅ ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } , ℝ* , < ) ) ) |
6 |
|
eqid |
⊢ ∅ = ∅ |
7 |
|
iftrue |
⊢ ( ∅ = ∅ → if ( ∅ = ∅ , 0 , inf ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m ∅ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ ∅ ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } , ℝ* , < ) ) = 0 ) |
8 |
6 7
|
ax-mp |
⊢ if ( ∅ = ∅ , 0 , inf ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m ∅ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ ∅ ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } , ℝ* , < ) ) = 0 |
9 |
8
|
a1i |
⊢ ( 𝜑 → if ( ∅ = ∅ , 0 , inf ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m ∅ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ ∅ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ ∅ ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } , ℝ* , < ) ) = 0 ) |
10 |
5 9
|
eqtrd |
⊢ ( 𝜑 → ( ( voln* ‘ ∅ ) ‘ 𝐴 ) = 0 ) |