| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hoissre.1 |
⊢ ( 𝜑 → 𝐼 : 𝑋 ⟶ ( ℝ × ℝ ) ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐼 : 𝑋 ⟶ ( ℝ × ℝ ) ) |
| 3 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝑘 ∈ 𝑋 ) |
| 4 |
2 3
|
fvovco |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) = ( ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) [,) ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) ) ) |
| 5 |
1
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐼 ‘ 𝑘 ) ∈ ( ℝ × ℝ ) ) |
| 6 |
|
xp1st |
⊢ ( ( 𝐼 ‘ 𝑘 ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) ∈ ℝ ) |
| 7 |
5 6
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) ∈ ℝ ) |
| 8 |
|
xp2nd |
⊢ ( ( 𝐼 ‘ 𝑘 ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) ∈ ℝ ) |
| 9 |
5 8
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) ∈ ℝ ) |
| 10 |
9
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) ∈ ℝ* ) |
| 11 |
|
icossre |
⊢ ( ( ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) ∈ ℝ* ) → ( ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) [,) ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) ) ⊆ ℝ ) |
| 12 |
7 10 11
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( 1st ‘ ( 𝐼 ‘ 𝑘 ) ) [,) ( 2nd ‘ ( 𝐼 ‘ 𝑘 ) ) ) ⊆ ℝ ) |
| 13 |
4 12
|
eqsstrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ⊆ ℝ ) |