| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoissre.1 | ⊢ ( 𝜑  →  𝐼 : 𝑋 ⟶ ( ℝ  ×  ℝ ) ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  𝐼 : 𝑋 ⟶ ( ℝ  ×  ℝ ) ) | 
						
							| 3 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  𝑘  ∈  𝑋 ) | 
						
							| 4 | 2 3 | fvovco | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( ( [,)  ∘  𝐼 ) ‘ 𝑘 )  =  ( ( 1st  ‘ ( 𝐼 ‘ 𝑘 ) ) [,) ( 2nd  ‘ ( 𝐼 ‘ 𝑘 ) ) ) ) | 
						
							| 5 | 1 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐼 ‘ 𝑘 )  ∈  ( ℝ  ×  ℝ ) ) | 
						
							| 6 |  | xp1st | ⊢ ( ( 𝐼 ‘ 𝑘 )  ∈  ( ℝ  ×  ℝ )  →  ( 1st  ‘ ( 𝐼 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 7 | 5 6 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 1st  ‘ ( 𝐼 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 8 |  | xp2nd | ⊢ ( ( 𝐼 ‘ 𝑘 )  ∈  ( ℝ  ×  ℝ )  →  ( 2nd  ‘ ( 𝐼 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 9 | 5 8 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 2nd  ‘ ( 𝐼 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 10 | 9 | rexrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 2nd  ‘ ( 𝐼 ‘ 𝑘 ) )  ∈  ℝ* ) | 
						
							| 11 |  | icossre | ⊢ ( ( ( 1st  ‘ ( 𝐼 ‘ 𝑘 ) )  ∈  ℝ  ∧  ( 2nd  ‘ ( 𝐼 ‘ 𝑘 ) )  ∈  ℝ* )  →  ( ( 1st  ‘ ( 𝐼 ‘ 𝑘 ) ) [,) ( 2nd  ‘ ( 𝐼 ‘ 𝑘 ) ) )  ⊆  ℝ ) | 
						
							| 12 | 7 10 11 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( ( 1st  ‘ ( 𝐼 ‘ 𝑘 ) ) [,) ( 2nd  ‘ ( 𝐼 ‘ 𝑘 ) ) )  ⊆  ℝ ) | 
						
							| 13 | 4 12 | eqsstrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( ( [,)  ∘  𝐼 ) ‘ 𝑘 )  ⊆  ℝ ) |