Metamath Proof Explorer


Theorem hoissre

Description: The projection of a half-open interval onto a single dimension is a subset of RR . (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypothesis hoissre.1 ( 𝜑𝐼 : 𝑋 ⟶ ( ℝ × ℝ ) )
Assertion hoissre ( ( 𝜑𝑘𝑋 ) → ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ⊆ ℝ )

Proof

Step Hyp Ref Expression
1 hoissre.1 ( 𝜑𝐼 : 𝑋 ⟶ ( ℝ × ℝ ) )
2 1 adantr ( ( 𝜑𝑘𝑋 ) → 𝐼 : 𝑋 ⟶ ( ℝ × ℝ ) )
3 simpr ( ( 𝜑𝑘𝑋 ) → 𝑘𝑋 )
4 2 3 fvovco ( ( 𝜑𝑘𝑋 ) → ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) = ( ( 1st ‘ ( 𝐼𝑘 ) ) [,) ( 2nd ‘ ( 𝐼𝑘 ) ) ) )
5 1 ffvelrnda ( ( 𝜑𝑘𝑋 ) → ( 𝐼𝑘 ) ∈ ( ℝ × ℝ ) )
6 xp1st ( ( 𝐼𝑘 ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( 𝐼𝑘 ) ) ∈ ℝ )
7 5 6 syl ( ( 𝜑𝑘𝑋 ) → ( 1st ‘ ( 𝐼𝑘 ) ) ∈ ℝ )
8 xp2nd ( ( 𝐼𝑘 ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( 𝐼𝑘 ) ) ∈ ℝ )
9 5 8 syl ( ( 𝜑𝑘𝑋 ) → ( 2nd ‘ ( 𝐼𝑘 ) ) ∈ ℝ )
10 9 rexrd ( ( 𝜑𝑘𝑋 ) → ( 2nd ‘ ( 𝐼𝑘 ) ) ∈ ℝ* )
11 icossre ( ( ( 1st ‘ ( 𝐼𝑘 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐼𝑘 ) ) ∈ ℝ* ) → ( ( 1st ‘ ( 𝐼𝑘 ) ) [,) ( 2nd ‘ ( 𝐼𝑘 ) ) ) ⊆ ℝ )
12 7 10 11 syl2anc ( ( 𝜑𝑘𝑋 ) → ( ( 1st ‘ ( 𝐼𝑘 ) ) [,) ( 2nd ‘ ( 𝐼𝑘 ) ) ) ⊆ ℝ )
13 4 12 eqsstrd ( ( 𝜑𝑘𝑋 ) → ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ⊆ ℝ )