| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoissre.1 |  |-  ( ph -> I : X --> ( RR X. RR ) ) | 
						
							| 2 | 1 | adantr |  |-  ( ( ph /\ k e. X ) -> I : X --> ( RR X. RR ) ) | 
						
							| 3 |  | simpr |  |-  ( ( ph /\ k e. X ) -> k e. X ) | 
						
							| 4 | 2 3 | fvovco |  |-  ( ( ph /\ k e. X ) -> ( ( [,) o. I ) ` k ) = ( ( 1st ` ( I ` k ) ) [,) ( 2nd ` ( I ` k ) ) ) ) | 
						
							| 5 | 1 | ffvelcdmda |  |-  ( ( ph /\ k e. X ) -> ( I ` k ) e. ( RR X. RR ) ) | 
						
							| 6 |  | xp1st |  |-  ( ( I ` k ) e. ( RR X. RR ) -> ( 1st ` ( I ` k ) ) e. RR ) | 
						
							| 7 | 5 6 | syl |  |-  ( ( ph /\ k e. X ) -> ( 1st ` ( I ` k ) ) e. RR ) | 
						
							| 8 |  | xp2nd |  |-  ( ( I ` k ) e. ( RR X. RR ) -> ( 2nd ` ( I ` k ) ) e. RR ) | 
						
							| 9 | 5 8 | syl |  |-  ( ( ph /\ k e. X ) -> ( 2nd ` ( I ` k ) ) e. RR ) | 
						
							| 10 | 9 | rexrd |  |-  ( ( ph /\ k e. X ) -> ( 2nd ` ( I ` k ) ) e. RR* ) | 
						
							| 11 |  | icossre |  |-  ( ( ( 1st ` ( I ` k ) ) e. RR /\ ( 2nd ` ( I ` k ) ) e. RR* ) -> ( ( 1st ` ( I ` k ) ) [,) ( 2nd ` ( I ` k ) ) ) C_ RR ) | 
						
							| 12 | 7 10 11 | syl2anc |  |-  ( ( ph /\ k e. X ) -> ( ( 1st ` ( I ` k ) ) [,) ( 2nd ` ( I ` k ) ) ) C_ RR ) | 
						
							| 13 | 4 12 | eqsstrd |  |-  ( ( ph /\ k e. X ) -> ( ( [,) o. I ) ` k ) C_ RR ) |