Step |
Hyp |
Ref |
Expression |
1 |
|
hoissre.1 |
|- ( ph -> I : X --> ( RR X. RR ) ) |
2 |
1
|
adantr |
|- ( ( ph /\ k e. X ) -> I : X --> ( RR X. RR ) ) |
3 |
|
simpr |
|- ( ( ph /\ k e. X ) -> k e. X ) |
4 |
2 3
|
fvovco |
|- ( ( ph /\ k e. X ) -> ( ( [,) o. I ) ` k ) = ( ( 1st ` ( I ` k ) ) [,) ( 2nd ` ( I ` k ) ) ) ) |
5 |
1
|
ffvelrnda |
|- ( ( ph /\ k e. X ) -> ( I ` k ) e. ( RR X. RR ) ) |
6 |
|
xp1st |
|- ( ( I ` k ) e. ( RR X. RR ) -> ( 1st ` ( I ` k ) ) e. RR ) |
7 |
5 6
|
syl |
|- ( ( ph /\ k e. X ) -> ( 1st ` ( I ` k ) ) e. RR ) |
8 |
|
xp2nd |
|- ( ( I ` k ) e. ( RR X. RR ) -> ( 2nd ` ( I ` k ) ) e. RR ) |
9 |
5 8
|
syl |
|- ( ( ph /\ k e. X ) -> ( 2nd ` ( I ` k ) ) e. RR ) |
10 |
9
|
rexrd |
|- ( ( ph /\ k e. X ) -> ( 2nd ` ( I ` k ) ) e. RR* ) |
11 |
|
icossre |
|- ( ( ( 1st ` ( I ` k ) ) e. RR /\ ( 2nd ` ( I ` k ) ) e. RR* ) -> ( ( 1st ` ( I ` k ) ) [,) ( 2nd ` ( I ` k ) ) ) C_ RR ) |
12 |
7 10 11
|
syl2anc |
|- ( ( ph /\ k e. X ) -> ( ( 1st ` ( I ` k ) ) [,) ( 2nd ` ( I ` k ) ) ) C_ RR ) |
13 |
4 12
|
eqsstrd |
|- ( ( ph /\ k e. X ) -> ( ( [,) o. I ) ` k ) C_ RR ) |