| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoicvr.2 |  |-  I = ( j e. NN |-> ( x e. X |-> <. -u j , j >. ) ) | 
						
							| 2 |  | hoicvr.3 |  |-  ( ph -> X e. Fin ) | 
						
							| 3 |  | reex |  |-  RR e. _V | 
						
							| 4 |  | mapdm0 |  |-  ( RR e. _V -> ( RR ^m (/) ) = { (/) } ) | 
						
							| 5 | 3 4 | ax-mp |  |-  ( RR ^m (/) ) = { (/) } | 
						
							| 6 | 5 | a1i |  |-  ( X = (/) -> ( RR ^m (/) ) = { (/) } ) | 
						
							| 7 |  | oveq2 |  |-  ( X = (/) -> ( RR ^m X ) = ( RR ^m (/) ) ) | 
						
							| 8 |  | ixpeq1 |  |-  ( X = (/) -> X_ i e. X ( ( [,) o. ( I ` j ) ) ` i ) = X_ i e. (/) ( ( [,) o. ( I ` j ) ) ` i ) ) | 
						
							| 9 | 8 | iuneq2d |  |-  ( X = (/) -> U_ j e. NN X_ i e. X ( ( [,) o. ( I ` j ) ) ` i ) = U_ j e. NN X_ i e. (/) ( ( [,) o. ( I ` j ) ) ` i ) ) | 
						
							| 10 |  | ixp0x |  |-  X_ i e. (/) ( ( [,) o. ( I ` j ) ) ` i ) = { (/) } | 
						
							| 11 | 10 | a1i |  |-  ( j e. NN -> X_ i e. (/) ( ( [,) o. ( I ` j ) ) ` i ) = { (/) } ) | 
						
							| 12 | 11 | iuneq2i |  |-  U_ j e. NN X_ i e. (/) ( ( [,) o. ( I ` j ) ) ` i ) = U_ j e. NN { (/) } | 
						
							| 13 |  | 1nn |  |-  1 e. NN | 
						
							| 14 | 13 | ne0ii |  |-  NN =/= (/) | 
						
							| 15 |  | iunconst |  |-  ( NN =/= (/) -> U_ j e. NN { (/) } = { (/) } ) | 
						
							| 16 | 14 15 | ax-mp |  |-  U_ j e. NN { (/) } = { (/) } | 
						
							| 17 | 12 16 | eqtri |  |-  U_ j e. NN X_ i e. (/) ( ( [,) o. ( I ` j ) ) ` i ) = { (/) } | 
						
							| 18 | 17 | a1i |  |-  ( X = (/) -> U_ j e. NN X_ i e. (/) ( ( [,) o. ( I ` j ) ) ` i ) = { (/) } ) | 
						
							| 19 | 9 18 | eqtrd |  |-  ( X = (/) -> U_ j e. NN X_ i e. X ( ( [,) o. ( I ` j ) ) ` i ) = { (/) } ) | 
						
							| 20 | 6 7 19 | 3eqtr4d |  |-  ( X = (/) -> ( RR ^m X ) = U_ j e. NN X_ i e. X ( ( [,) o. ( I ` j ) ) ` i ) ) | 
						
							| 21 |  | eqimss |  |-  ( ( RR ^m X ) = U_ j e. NN X_ i e. X ( ( [,) o. ( I ` j ) ) ` i ) -> ( RR ^m X ) C_ U_ j e. NN X_ i e. X ( ( [,) o. ( I ` j ) ) ` i ) ) | 
						
							| 22 | 20 21 | syl |  |-  ( X = (/) -> ( RR ^m X ) C_ U_ j e. NN X_ i e. X ( ( [,) o. ( I ` j ) ) ` i ) ) | 
						
							| 23 | 22 | adantl |  |-  ( ( ph /\ X = (/) ) -> ( RR ^m X ) C_ U_ j e. NN X_ i e. X ( ( [,) o. ( I ` j ) ) ` i ) ) | 
						
							| 24 |  | simpll |  |-  ( ( ( ph /\ -. X = (/) ) /\ f e. ( RR ^m X ) ) -> ph ) | 
						
							| 25 |  | simpr |  |-  ( ( ( ph /\ -. X = (/) ) /\ f e. ( RR ^m X ) ) -> f e. ( RR ^m X ) ) | 
						
							| 26 |  | simplr |  |-  ( ( ( ph /\ -. X = (/) ) /\ f e. ( RR ^m X ) ) -> -. X = (/) ) | 
						
							| 27 |  | rncoss |  |-  ran ( abs o. f ) C_ ran abs | 
						
							| 28 |  | absf |  |-  abs : CC --> RR | 
						
							| 29 |  | frn |  |-  ( abs : CC --> RR -> ran abs C_ RR ) | 
						
							| 30 | 28 29 | ax-mp |  |-  ran abs C_ RR | 
						
							| 31 | 27 30 | sstri |  |-  ran ( abs o. f ) C_ RR | 
						
							| 32 | 31 | a1i |  |-  ( ( ( ph /\ f e. ( RR ^m X ) ) /\ -. X = (/) ) -> ran ( abs o. f ) C_ RR ) | 
						
							| 33 |  | ltso |  |-  < Or RR | 
						
							| 34 | 33 | a1i |  |-  ( ( ( ph /\ f e. ( RR ^m X ) ) /\ -. X = (/) ) -> < Or RR ) | 
						
							| 35 | 28 | a1i |  |-  ( ( ph /\ f e. ( RR ^m X ) ) -> abs : CC --> RR ) | 
						
							| 36 |  | elmapi |  |-  ( f e. ( RR ^m X ) -> f : X --> RR ) | 
						
							| 37 | 36 | adantl |  |-  ( ( ph /\ f e. ( RR ^m X ) ) -> f : X --> RR ) | 
						
							| 38 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 39 | 38 | a1i |  |-  ( ( ph /\ f e. ( RR ^m X ) ) -> RR C_ CC ) | 
						
							| 40 | 37 39 | fssd |  |-  ( ( ph /\ f e. ( RR ^m X ) ) -> f : X --> CC ) | 
						
							| 41 |  | fco |  |-  ( ( abs : CC --> RR /\ f : X --> CC ) -> ( abs o. f ) : X --> RR ) | 
						
							| 42 | 35 40 41 | syl2anc |  |-  ( ( ph /\ f e. ( RR ^m X ) ) -> ( abs o. f ) : X --> RR ) | 
						
							| 43 | 2 | adantr |  |-  ( ( ph /\ f e. ( RR ^m X ) ) -> X e. Fin ) | 
						
							| 44 |  | rnffi |  |-  ( ( ( abs o. f ) : X --> RR /\ X e. Fin ) -> ran ( abs o. f ) e. Fin ) | 
						
							| 45 | 42 43 44 | syl2anc |  |-  ( ( ph /\ f e. ( RR ^m X ) ) -> ran ( abs o. f ) e. Fin ) | 
						
							| 46 | 45 | adantr |  |-  ( ( ( ph /\ f e. ( RR ^m X ) ) /\ -. X = (/) ) -> ran ( abs o. f ) e. Fin ) | 
						
							| 47 | 36 | frnd |  |-  ( f e. ( RR ^m X ) -> ran f C_ RR ) | 
						
							| 48 | 28 | fdmi |  |-  dom abs = CC | 
						
							| 49 | 48 | eqcomi |  |-  CC = dom abs | 
						
							| 50 | 38 49 | sseqtri |  |-  RR C_ dom abs | 
						
							| 51 | 50 | a1i |  |-  ( f e. ( RR ^m X ) -> RR C_ dom abs ) | 
						
							| 52 | 47 51 | sstrd |  |-  ( f e. ( RR ^m X ) -> ran f C_ dom abs ) | 
						
							| 53 |  | dmcosseq |  |-  ( ran f C_ dom abs -> dom ( abs o. f ) = dom f ) | 
						
							| 54 | 52 53 | syl |  |-  ( f e. ( RR ^m X ) -> dom ( abs o. f ) = dom f ) | 
						
							| 55 | 36 | fdmd |  |-  ( f e. ( RR ^m X ) -> dom f = X ) | 
						
							| 56 | 54 55 | eqtrd |  |-  ( f e. ( RR ^m X ) -> dom ( abs o. f ) = X ) | 
						
							| 57 | 56 | adantr |  |-  ( ( f e. ( RR ^m X ) /\ -. X = (/) ) -> dom ( abs o. f ) = X ) | 
						
							| 58 |  | neqne |  |-  ( -. X = (/) -> X =/= (/) ) | 
						
							| 59 | 58 | adantl |  |-  ( ( f e. ( RR ^m X ) /\ -. X = (/) ) -> X =/= (/) ) | 
						
							| 60 | 57 59 | eqnetrd |  |-  ( ( f e. ( RR ^m X ) /\ -. X = (/) ) -> dom ( abs o. f ) =/= (/) ) | 
						
							| 61 | 60 | neneqd |  |-  ( ( f e. ( RR ^m X ) /\ -. X = (/) ) -> -. dom ( abs o. f ) = (/) ) | 
						
							| 62 |  | dm0rn0 |  |-  ( dom ( abs o. f ) = (/) <-> ran ( abs o. f ) = (/) ) | 
						
							| 63 | 61 62 | sylnib |  |-  ( ( f e. ( RR ^m X ) /\ -. X = (/) ) -> -. ran ( abs o. f ) = (/) ) | 
						
							| 64 | 63 | neqned |  |-  ( ( f e. ( RR ^m X ) /\ -. X = (/) ) -> ran ( abs o. f ) =/= (/) ) | 
						
							| 65 | 64 | adantll |  |-  ( ( ( ph /\ f e. ( RR ^m X ) ) /\ -. X = (/) ) -> ran ( abs o. f ) =/= (/) ) | 
						
							| 66 |  | fisupcl |  |-  ( ( < Or RR /\ ( ran ( abs o. f ) e. Fin /\ ran ( abs o. f ) =/= (/) /\ ran ( abs o. f ) C_ RR ) ) -> sup ( ran ( abs o. f ) , RR , < ) e. ran ( abs o. f ) ) | 
						
							| 67 | 34 46 65 32 66 | syl13anc |  |-  ( ( ( ph /\ f e. ( RR ^m X ) ) /\ -. X = (/) ) -> sup ( ran ( abs o. f ) , RR , < ) e. ran ( abs o. f ) ) | 
						
							| 68 | 32 67 | sseldd |  |-  ( ( ( ph /\ f e. ( RR ^m X ) ) /\ -. X = (/) ) -> sup ( ran ( abs o. f ) , RR , < ) e. RR ) | 
						
							| 69 |  | arch |  |-  ( sup ( ran ( abs o. f ) , RR , < ) e. RR -> E. j e. NN sup ( ran ( abs o. f ) , RR , < ) < j ) | 
						
							| 70 | 68 69 | syl |  |-  ( ( ( ph /\ f e. ( RR ^m X ) ) /\ -. X = (/) ) -> E. j e. NN sup ( ran ( abs o. f ) , RR , < ) < j ) | 
						
							| 71 | 37 | ffnd |  |-  ( ( ph /\ f e. ( RR ^m X ) ) -> f Fn X ) | 
						
							| 72 | 71 | ad2antrr |  |-  ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ -. X = (/) ) /\ sup ( ran ( abs o. f ) , RR , < ) < j ) -> f Fn X ) | 
						
							| 73 | 72 | adantlr |  |-  ( ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ -. X = (/) ) /\ j e. NN ) /\ sup ( ran ( abs o. f ) , RR , < ) < j ) -> f Fn X ) | 
						
							| 74 |  | simplll |  |-  ( ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ j e. NN ) /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> ( ph /\ f e. ( RR ^m X ) ) ) | 
						
							| 75 |  | id |  |-  ( j e. NN -> j e. NN ) | 
						
							| 76 | 75 | ad3antlr |  |-  ( ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ j e. NN ) /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> j e. NN ) | 
						
							| 77 |  | simplr |  |-  ( ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ j e. NN ) /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> sup ( ran ( abs o. f ) , RR , < ) < j ) | 
						
							| 78 |  | simpr |  |-  ( ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ j e. NN ) /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> i e. X ) | 
						
							| 79 |  | simp2 |  |-  ( ( ( ph /\ f e. ( RR ^m X ) ) /\ j e. NN /\ sup ( ran ( abs o. f ) , RR , < ) < j ) -> j e. NN ) | 
						
							| 80 |  | zssre |  |-  ZZ C_ RR | 
						
							| 81 |  | ressxr |  |-  RR C_ RR* | 
						
							| 82 | 80 81 | sstri |  |-  ZZ C_ RR* | 
						
							| 83 |  | nnnegz |  |-  ( j e. NN -> -u j e. ZZ ) | 
						
							| 84 | 82 83 | sselid |  |-  ( j e. NN -> -u j e. RR* ) | 
						
							| 85 | 84 | adantr |  |-  ( ( j e. NN /\ i e. X ) -> -u j e. RR* ) | 
						
							| 86 | 79 85 | sylan |  |-  ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ j e. NN /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> -u j e. RR* ) | 
						
							| 87 | 75 | nnxrd |  |-  ( j e. NN -> j e. RR* ) | 
						
							| 88 | 87 | adantr |  |-  ( ( j e. NN /\ i e. X ) -> j e. RR* ) | 
						
							| 89 | 79 88 | sylan |  |-  ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ j e. NN /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> j e. RR* ) | 
						
							| 90 | 36 | 3ad2ant1 |  |-  ( ( f e. ( RR ^m X ) /\ j e. NN /\ sup ( ran ( abs o. f ) , RR , < ) < j ) -> f : X --> RR ) | 
						
							| 91 | 81 | a1i |  |-  ( ( f e. ( RR ^m X ) /\ j e. NN /\ sup ( ran ( abs o. f ) , RR , < ) < j ) -> RR C_ RR* ) | 
						
							| 92 | 90 91 | fssd |  |-  ( ( f e. ( RR ^m X ) /\ j e. NN /\ sup ( ran ( abs o. f ) , RR , < ) < j ) -> f : X --> RR* ) | 
						
							| 93 | 92 | 3adant1l |  |-  ( ( ( ph /\ f e. ( RR ^m X ) ) /\ j e. NN /\ sup ( ran ( abs o. f ) , RR , < ) < j ) -> f : X --> RR* ) | 
						
							| 94 | 93 | ffvelcdmda |  |-  ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ j e. NN /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> ( f ` i ) e. RR* ) | 
						
							| 95 |  | nnre |  |-  ( j e. NN -> j e. RR ) | 
						
							| 96 | 95 | adantr |  |-  ( ( j e. NN /\ i e. X ) -> j e. RR ) | 
						
							| 97 | 96 | 3ad2antl2 |  |-  ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ j e. NN /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> j e. RR ) | 
						
							| 98 | 97 | renegcld |  |-  ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ j e. NN /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> -u j e. RR ) | 
						
							| 99 | 37 | ffvelcdmda |  |-  ( ( ( ph /\ f e. ( RR ^m X ) ) /\ i e. X ) -> ( f ` i ) e. RR ) | 
						
							| 100 | 99 | 3ad2antl1 |  |-  ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ j e. NN /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> ( f ` i ) e. RR ) | 
						
							| 101 | 100 | renegcld |  |-  ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ j e. NN /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> -u ( f ` i ) e. RR ) | 
						
							| 102 |  | simpll |  |-  ( ( ( ph /\ f e. ( RR ^m X ) ) /\ i e. X ) -> ph ) | 
						
							| 103 |  | simplr |  |-  ( ( ( ph /\ f e. ( RR ^m X ) ) /\ i e. X ) -> f e. ( RR ^m X ) ) | 
						
							| 104 |  | n0i |  |-  ( i e. X -> -. X = (/) ) | 
						
							| 105 | 104 | adantl |  |-  ( ( ( ph /\ f e. ( RR ^m X ) ) /\ i e. X ) -> -. X = (/) ) | 
						
							| 106 | 102 103 105 68 | syl21anc |  |-  ( ( ( ph /\ f e. ( RR ^m X ) ) /\ i e. X ) -> sup ( ran ( abs o. f ) , RR , < ) e. RR ) | 
						
							| 107 | 106 | 3ad2antl1 |  |-  ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ j e. NN /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> sup ( ran ( abs o. f ) , RR , < ) e. RR ) | 
						
							| 108 | 36 | ffvelcdmda |  |-  ( ( f e. ( RR ^m X ) /\ i e. X ) -> ( f ` i ) e. RR ) | 
						
							| 109 | 38 108 | sselid |  |-  ( ( f e. ( RR ^m X ) /\ i e. X ) -> ( f ` i ) e. CC ) | 
						
							| 110 | 109 | abscld |  |-  ( ( f e. ( RR ^m X ) /\ i e. X ) -> ( abs ` ( f ` i ) ) e. RR ) | 
						
							| 111 | 110 | adantll |  |-  ( ( ( ph /\ f e. ( RR ^m X ) ) /\ i e. X ) -> ( abs ` ( f ` i ) ) e. RR ) | 
						
							| 112 | 111 | 3ad2antl1 |  |-  ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ j e. NN /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> ( abs ` ( f ` i ) ) e. RR ) | 
						
							| 113 | 108 | renegcld |  |-  ( ( f e. ( RR ^m X ) /\ i e. X ) -> -u ( f ` i ) e. RR ) | 
						
							| 114 | 113 | leabsd |  |-  ( ( f e. ( RR ^m X ) /\ i e. X ) -> -u ( f ` i ) <_ ( abs ` -u ( f ` i ) ) ) | 
						
							| 115 | 109 | absnegd |  |-  ( ( f e. ( RR ^m X ) /\ i e. X ) -> ( abs ` -u ( f ` i ) ) = ( abs ` ( f ` i ) ) ) | 
						
							| 116 | 114 115 | breqtrd |  |-  ( ( f e. ( RR ^m X ) /\ i e. X ) -> -u ( f ` i ) <_ ( abs ` ( f ` i ) ) ) | 
						
							| 117 | 116 | adantll |  |-  ( ( ( ph /\ f e. ( RR ^m X ) ) /\ i e. X ) -> -u ( f ` i ) <_ ( abs ` ( f ` i ) ) ) | 
						
							| 118 | 117 | 3ad2antl1 |  |-  ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ j e. NN /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> -u ( f ` i ) <_ ( abs ` ( f ` i ) ) ) | 
						
							| 119 | 31 | a1i |  |-  ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ j e. NN /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> ran ( abs o. f ) C_ RR ) | 
						
							| 120 | 105 65 | syldan |  |-  ( ( ( ph /\ f e. ( RR ^m X ) ) /\ i e. X ) -> ran ( abs o. f ) =/= (/) ) | 
						
							| 121 | 120 | 3ad2antl1 |  |-  ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ j e. NN /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> ran ( abs o. f ) =/= (/) ) | 
						
							| 122 |  | fimaxre2 |  |-  ( ( ran ( abs o. f ) C_ RR /\ ran ( abs o. f ) e. Fin ) -> E. y e. RR A. z e. ran ( abs o. f ) z <_ y ) | 
						
							| 123 | 31 45 122 | sylancr |  |-  ( ( ph /\ f e. ( RR ^m X ) ) -> E. y e. RR A. z e. ran ( abs o. f ) z <_ y ) | 
						
							| 124 | 123 | adantr |  |-  ( ( ( ph /\ f e. ( RR ^m X ) ) /\ i e. X ) -> E. y e. RR A. z e. ran ( abs o. f ) z <_ y ) | 
						
							| 125 | 124 | 3ad2antl1 |  |-  ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ j e. NN /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> E. y e. RR A. z e. ran ( abs o. f ) z <_ y ) | 
						
							| 126 |  | elmapfun |  |-  ( f e. ( RR ^m X ) -> Fun f ) | 
						
							| 127 | 126 | adantr |  |-  ( ( f e. ( RR ^m X ) /\ i e. X ) -> Fun f ) | 
						
							| 128 |  | simpr |  |-  ( ( f e. ( RR ^m X ) /\ i e. X ) -> i e. X ) | 
						
							| 129 | 55 | eqcomd |  |-  ( f e. ( RR ^m X ) -> X = dom f ) | 
						
							| 130 | 129 | adantr |  |-  ( ( f e. ( RR ^m X ) /\ i e. X ) -> X = dom f ) | 
						
							| 131 | 128 130 | eleqtrd |  |-  ( ( f e. ( RR ^m X ) /\ i e. X ) -> i e. dom f ) | 
						
							| 132 |  | fvco |  |-  ( ( Fun f /\ i e. dom f ) -> ( ( abs o. f ) ` i ) = ( abs ` ( f ` i ) ) ) | 
						
							| 133 | 127 131 132 | syl2anc |  |-  ( ( f e. ( RR ^m X ) /\ i e. X ) -> ( ( abs o. f ) ` i ) = ( abs ` ( f ` i ) ) ) | 
						
							| 134 | 133 | eqcomd |  |-  ( ( f e. ( RR ^m X ) /\ i e. X ) -> ( abs ` ( f ` i ) ) = ( ( abs o. f ) ` i ) ) | 
						
							| 135 |  | absfun |  |-  Fun abs | 
						
							| 136 | 135 | a1i |  |-  ( f e. ( RR ^m X ) -> Fun abs ) | 
						
							| 137 |  | funco |  |-  ( ( Fun abs /\ Fun f ) -> Fun ( abs o. f ) ) | 
						
							| 138 | 136 126 137 | syl2anc |  |-  ( f e. ( RR ^m X ) -> Fun ( abs o. f ) ) | 
						
							| 139 | 138 | adantr |  |-  ( ( f e. ( RR ^m X ) /\ i e. X ) -> Fun ( abs o. f ) ) | 
						
							| 140 | 109 49 | eleqtrdi |  |-  ( ( f e. ( RR ^m X ) /\ i e. X ) -> ( f ` i ) e. dom abs ) | 
						
							| 141 |  | dmfco |  |-  ( ( Fun f /\ i e. dom f ) -> ( i e. dom ( abs o. f ) <-> ( f ` i ) e. dom abs ) ) | 
						
							| 142 | 127 131 141 | syl2anc |  |-  ( ( f e. ( RR ^m X ) /\ i e. X ) -> ( i e. dom ( abs o. f ) <-> ( f ` i ) e. dom abs ) ) | 
						
							| 143 | 140 142 | mpbird |  |-  ( ( f e. ( RR ^m X ) /\ i e. X ) -> i e. dom ( abs o. f ) ) | 
						
							| 144 |  | fvelrn |  |-  ( ( Fun ( abs o. f ) /\ i e. dom ( abs o. f ) ) -> ( ( abs o. f ) ` i ) e. ran ( abs o. f ) ) | 
						
							| 145 | 139 143 144 | syl2anc |  |-  ( ( f e. ( RR ^m X ) /\ i e. X ) -> ( ( abs o. f ) ` i ) e. ran ( abs o. f ) ) | 
						
							| 146 | 134 145 | eqeltrd |  |-  ( ( f e. ( RR ^m X ) /\ i e. X ) -> ( abs ` ( f ` i ) ) e. ran ( abs o. f ) ) | 
						
							| 147 | 146 | adantll |  |-  ( ( ( ph /\ f e. ( RR ^m X ) ) /\ i e. X ) -> ( abs ` ( f ` i ) ) e. ran ( abs o. f ) ) | 
						
							| 148 | 147 | 3ad2antl1 |  |-  ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ j e. NN /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> ( abs ` ( f ` i ) ) e. ran ( abs o. f ) ) | 
						
							| 149 |  | suprub |  |-  ( ( ( ran ( abs o. f ) C_ RR /\ ran ( abs o. f ) =/= (/) /\ E. y e. RR A. z e. ran ( abs o. f ) z <_ y ) /\ ( abs ` ( f ` i ) ) e. ran ( abs o. f ) ) -> ( abs ` ( f ` i ) ) <_ sup ( ran ( abs o. f ) , RR , < ) ) | 
						
							| 150 | 119 121 125 148 149 | syl31anc |  |-  ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ j e. NN /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> ( abs ` ( f ` i ) ) <_ sup ( ran ( abs o. f ) , RR , < ) ) | 
						
							| 151 | 101 112 107 118 150 | letrd |  |-  ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ j e. NN /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> -u ( f ` i ) <_ sup ( ran ( abs o. f ) , RR , < ) ) | 
						
							| 152 |  | simpl3 |  |-  ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ j e. NN /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> sup ( ran ( abs o. f ) , RR , < ) < j ) | 
						
							| 153 | 101 107 97 151 152 | lelttrd |  |-  ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ j e. NN /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> -u ( f ` i ) < j ) | 
						
							| 154 | 101 97 | ltnegd |  |-  ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ j e. NN /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> ( -u ( f ` i ) < j <-> -u j < -u -u ( f ` i ) ) ) | 
						
							| 155 | 153 154 | mpbid |  |-  ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ j e. NN /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> -u j < -u -u ( f ` i ) ) | 
						
							| 156 | 38 100 | sselid |  |-  ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ j e. NN /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> ( f ` i ) e. CC ) | 
						
							| 157 | 156 | negnegd |  |-  ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ j e. NN /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> -u -u ( f ` i ) = ( f ` i ) ) | 
						
							| 158 | 155 157 | breqtrd |  |-  ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ j e. NN /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> -u j < ( f ` i ) ) | 
						
							| 159 | 98 100 158 | ltled |  |-  ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ j e. NN /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> -u j <_ ( f ` i ) ) | 
						
							| 160 | 100 | leabsd |  |-  ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ j e. NN /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> ( f ` i ) <_ ( abs ` ( f ` i ) ) ) | 
						
							| 161 | 100 112 107 160 150 | letrd |  |-  ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ j e. NN /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> ( f ` i ) <_ sup ( ran ( abs o. f ) , RR , < ) ) | 
						
							| 162 | 100 107 97 161 152 | lelttrd |  |-  ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ j e. NN /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> ( f ` i ) < j ) | 
						
							| 163 | 86 89 94 159 162 | elicod |  |-  ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ j e. NN /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> ( f ` i ) e. ( -u j [,) j ) ) | 
						
							| 164 | 74 76 77 78 163 | syl31anc |  |-  ( ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ j e. NN ) /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> ( f ` i ) e. ( -u j [,) j ) ) | 
						
							| 165 | 164 | adantl3r |  |-  ( ( ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ -. X = (/) ) /\ j e. NN ) /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> ( f ` i ) e. ( -u j [,) j ) ) | 
						
							| 166 |  | simpr |  |-  ( ( ph /\ j e. NN ) -> j e. NN ) | 
						
							| 167 |  | mptexg |  |-  ( X e. Fin -> ( x e. X |-> <. -u j , j >. ) e. _V ) | 
						
							| 168 | 2 167 | syl |  |-  ( ph -> ( x e. X |-> <. -u j , j >. ) e. _V ) | 
						
							| 169 | 168 | adantr |  |-  ( ( ph /\ j e. NN ) -> ( x e. X |-> <. -u j , j >. ) e. _V ) | 
						
							| 170 | 1 | fvmpt2 |  |-  ( ( j e. NN /\ ( x e. X |-> <. -u j , j >. ) e. _V ) -> ( I ` j ) = ( x e. X |-> <. -u j , j >. ) ) | 
						
							| 171 | 166 169 170 | syl2anc |  |-  ( ( ph /\ j e. NN ) -> ( I ` j ) = ( x e. X |-> <. -u j , j >. ) ) | 
						
							| 172 | 171 | fveq1d |  |-  ( ( ph /\ j e. NN ) -> ( ( I ` j ) ` i ) = ( ( x e. X |-> <. -u j , j >. ) ` i ) ) | 
						
							| 173 | 172 | 3adant3 |  |-  ( ( ph /\ j e. NN /\ i e. X ) -> ( ( I ` j ) ` i ) = ( ( x e. X |-> <. -u j , j >. ) ` i ) ) | 
						
							| 174 |  | eqidd |  |-  ( i e. X -> ( x e. X |-> <. -u j , j >. ) = ( x e. X |-> <. -u j , j >. ) ) | 
						
							| 175 |  | eqid |  |-  <. -u j , j >. = <. -u j , j >. | 
						
							| 176 | 175 | a1i |  |-  ( ( i e. X /\ x = i ) -> <. -u j , j >. = <. -u j , j >. ) | 
						
							| 177 |  | id |  |-  ( i e. X -> i e. X ) | 
						
							| 178 |  | opex |  |-  <. -u j , j >. e. _V | 
						
							| 179 | 178 | a1i |  |-  ( i e. X -> <. -u j , j >. e. _V ) | 
						
							| 180 | 174 176 177 179 | fvmptd |  |-  ( i e. X -> ( ( x e. X |-> <. -u j , j >. ) ` i ) = <. -u j , j >. ) | 
						
							| 181 | 180 | 3ad2ant3 |  |-  ( ( ph /\ j e. NN /\ i e. X ) -> ( ( x e. X |-> <. -u j , j >. ) ` i ) = <. -u j , j >. ) | 
						
							| 182 | 173 181 | eqtrd |  |-  ( ( ph /\ j e. NN /\ i e. X ) -> ( ( I ` j ) ` i ) = <. -u j , j >. ) | 
						
							| 183 | 182 | fveq2d |  |-  ( ( ph /\ j e. NN /\ i e. X ) -> ( 1st ` ( ( I ` j ) ` i ) ) = ( 1st ` <. -u j , j >. ) ) | 
						
							| 184 |  | negex |  |-  -u j e. _V | 
						
							| 185 |  | vex |  |-  j e. _V | 
						
							| 186 | 184 185 | op1st |  |-  ( 1st ` <. -u j , j >. ) = -u j | 
						
							| 187 | 186 | a1i |  |-  ( ( ph /\ j e. NN /\ i e. X ) -> ( 1st ` <. -u j , j >. ) = -u j ) | 
						
							| 188 | 183 187 | eqtrd |  |-  ( ( ph /\ j e. NN /\ i e. X ) -> ( 1st ` ( ( I ` j ) ` i ) ) = -u j ) | 
						
							| 189 | 182 | fveq2d |  |-  ( ( ph /\ j e. NN /\ i e. X ) -> ( 2nd ` ( ( I ` j ) ` i ) ) = ( 2nd ` <. -u j , j >. ) ) | 
						
							| 190 | 184 185 | op2nd |  |-  ( 2nd ` <. -u j , j >. ) = j | 
						
							| 191 | 190 | a1i |  |-  ( ( ph /\ j e. NN /\ i e. X ) -> ( 2nd ` <. -u j , j >. ) = j ) | 
						
							| 192 | 189 191 | eqtrd |  |-  ( ( ph /\ j e. NN /\ i e. X ) -> ( 2nd ` ( ( I ` j ) ` i ) ) = j ) | 
						
							| 193 | 188 192 | oveq12d |  |-  ( ( ph /\ j e. NN /\ i e. X ) -> ( ( 1st ` ( ( I ` j ) ` i ) ) [,) ( 2nd ` ( ( I ` j ) ` i ) ) ) = ( -u j [,) j ) ) | 
						
							| 194 | 193 | eqcomd |  |-  ( ( ph /\ j e. NN /\ i e. X ) -> ( -u j [,) j ) = ( ( 1st ` ( ( I ` j ) ` i ) ) [,) ( 2nd ` ( ( I ` j ) ` i ) ) ) ) | 
						
							| 195 | 194 | 3adant1r |  |-  ( ( ( ph /\ f e. ( RR ^m X ) ) /\ j e. NN /\ i e. X ) -> ( -u j [,) j ) = ( ( 1st ` ( ( I ` j ) ` i ) ) [,) ( 2nd ` ( ( I ` j ) ` i ) ) ) ) | 
						
							| 196 | 195 | ad5ant135 |  |-  ( ( ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ -. X = (/) ) /\ j e. NN ) /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> ( -u j [,) j ) = ( ( 1st ` ( ( I ` j ) ` i ) ) [,) ( 2nd ` ( ( I ` j ) ` i ) ) ) ) | 
						
							| 197 | 165 196 | eleqtrd |  |-  ( ( ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ -. X = (/) ) /\ j e. NN ) /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> ( f ` i ) e. ( ( 1st ` ( ( I ` j ) ` i ) ) [,) ( 2nd ` ( ( I ` j ) ` i ) ) ) ) | 
						
							| 198 | 80 83 | sselid |  |-  ( j e. NN -> -u j e. RR ) | 
						
							| 199 |  | opelxpi |  |-  ( ( -u j e. RR /\ j e. RR ) -> <. -u j , j >. e. ( RR X. RR ) ) | 
						
							| 200 | 198 95 199 | syl2anc |  |-  ( j e. NN -> <. -u j , j >. e. ( RR X. RR ) ) | 
						
							| 201 | 200 | ad2antlr |  |-  ( ( ( ph /\ j e. NN ) /\ x e. X ) -> <. -u j , j >. e. ( RR X. RR ) ) | 
						
							| 202 |  | eqid |  |-  ( x e. X |-> <. -u j , j >. ) = ( x e. X |-> <. -u j , j >. ) | 
						
							| 203 | 201 202 | fmptd |  |-  ( ( ph /\ j e. NN ) -> ( x e. X |-> <. -u j , j >. ) : X --> ( RR X. RR ) ) | 
						
							| 204 | 171 | feq1d |  |-  ( ( ph /\ j e. NN ) -> ( ( I ` j ) : X --> ( RR X. RR ) <-> ( x e. X |-> <. -u j , j >. ) : X --> ( RR X. RR ) ) ) | 
						
							| 205 | 203 204 | mpbird |  |-  ( ( ph /\ j e. NN ) -> ( I ` j ) : X --> ( RR X. RR ) ) | 
						
							| 206 | 205 | ad4ant14 |  |-  ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ -. X = (/) ) /\ j e. NN ) -> ( I ` j ) : X --> ( RR X. RR ) ) | 
						
							| 207 | 206 | ad2antrr |  |-  ( ( ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ -. X = (/) ) /\ j e. NN ) /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> ( I ` j ) : X --> ( RR X. RR ) ) | 
						
							| 208 |  | simpr |  |-  ( ( ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ -. X = (/) ) /\ j e. NN ) /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> i e. X ) | 
						
							| 209 | 207 208 | fvovco |  |-  ( ( ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ -. X = (/) ) /\ j e. NN ) /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> ( ( [,) o. ( I ` j ) ) ` i ) = ( ( 1st ` ( ( I ` j ) ` i ) ) [,) ( 2nd ` ( ( I ` j ) ` i ) ) ) ) | 
						
							| 210 | 209 | eqcomd |  |-  ( ( ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ -. X = (/) ) /\ j e. NN ) /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> ( ( 1st ` ( ( I ` j ) ` i ) ) [,) ( 2nd ` ( ( I ` j ) ` i ) ) ) = ( ( [,) o. ( I ` j ) ) ` i ) ) | 
						
							| 211 | 197 210 | eleqtrd |  |-  ( ( ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ -. X = (/) ) /\ j e. NN ) /\ sup ( ran ( abs o. f ) , RR , < ) < j ) /\ i e. X ) -> ( f ` i ) e. ( ( [,) o. ( I ` j ) ) ` i ) ) | 
						
							| 212 | 211 | ralrimiva |  |-  ( ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ -. X = (/) ) /\ j e. NN ) /\ sup ( ran ( abs o. f ) , RR , < ) < j ) -> A. i e. X ( f ` i ) e. ( ( [,) o. ( I ` j ) ) ` i ) ) | 
						
							| 213 | 73 212 | jca |  |-  ( ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ -. X = (/) ) /\ j e. NN ) /\ sup ( ran ( abs o. f ) , RR , < ) < j ) -> ( f Fn X /\ A. i e. X ( f ` i ) e. ( ( [,) o. ( I ` j ) ) ` i ) ) ) | 
						
							| 214 |  | vex |  |-  f e. _V | 
						
							| 215 | 214 | elixp |  |-  ( f e. X_ i e. X ( ( [,) o. ( I ` j ) ) ` i ) <-> ( f Fn X /\ A. i e. X ( f ` i ) e. ( ( [,) o. ( I ` j ) ) ` i ) ) ) | 
						
							| 216 | 213 215 | sylibr |  |-  ( ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ -. X = (/) ) /\ j e. NN ) /\ sup ( ran ( abs o. f ) , RR , < ) < j ) -> f e. X_ i e. X ( ( [,) o. ( I ` j ) ) ` i ) ) | 
						
							| 217 | 216 | ex |  |-  ( ( ( ( ph /\ f e. ( RR ^m X ) ) /\ -. X = (/) ) /\ j e. NN ) -> ( sup ( ran ( abs o. f ) , RR , < ) < j -> f e. X_ i e. X ( ( [,) o. ( I ` j ) ) ` i ) ) ) | 
						
							| 218 | 217 | reximdva |  |-  ( ( ( ph /\ f e. ( RR ^m X ) ) /\ -. X = (/) ) -> ( E. j e. NN sup ( ran ( abs o. f ) , RR , < ) < j -> E. j e. NN f e. X_ i e. X ( ( [,) o. ( I ` j ) ) ` i ) ) ) | 
						
							| 219 | 70 218 | mpd |  |-  ( ( ( ph /\ f e. ( RR ^m X ) ) /\ -. X = (/) ) -> E. j e. NN f e. X_ i e. X ( ( [,) o. ( I ` j ) ) ` i ) ) | 
						
							| 220 | 24 25 26 219 | syl21anc |  |-  ( ( ( ph /\ -. X = (/) ) /\ f e. ( RR ^m X ) ) -> E. j e. NN f e. X_ i e. X ( ( [,) o. ( I ` j ) ) ` i ) ) | 
						
							| 221 |  | eliun |  |-  ( f e. U_ j e. NN X_ i e. X ( ( [,) o. ( I ` j ) ) ` i ) <-> E. j e. NN f e. X_ i e. X ( ( [,) o. ( I ` j ) ) ` i ) ) | 
						
							| 222 | 220 221 | sylibr |  |-  ( ( ( ph /\ -. X = (/) ) /\ f e. ( RR ^m X ) ) -> f e. U_ j e. NN X_ i e. X ( ( [,) o. ( I ` j ) ) ` i ) ) | 
						
							| 223 | 222 | ralrimiva |  |-  ( ( ph /\ -. X = (/) ) -> A. f e. ( RR ^m X ) f e. U_ j e. NN X_ i e. X ( ( [,) o. ( I ` j ) ) ` i ) ) | 
						
							| 224 |  | dfss3 |  |-  ( ( RR ^m X ) C_ U_ j e. NN X_ i e. X ( ( [,) o. ( I ` j ) ) ` i ) <-> A. f e. ( RR ^m X ) f e. U_ j e. NN X_ i e. X ( ( [,) o. ( I ` j ) ) ` i ) ) | 
						
							| 225 | 223 224 | sylibr |  |-  ( ( ph /\ -. X = (/) ) -> ( RR ^m X ) C_ U_ j e. NN X_ i e. X ( ( [,) o. ( I ` j ) ) ` i ) ) | 
						
							| 226 | 23 225 | pm2.61dan |  |-  ( ph -> ( RR ^m X ) C_ U_ j e. NN X_ i e. X ( ( [,) o. ( I ` j ) ) ` i ) ) |