Step |
Hyp |
Ref |
Expression |
1 |
|
hoicvr.2 |
⊢ 𝐼 = ( 𝑗 ∈ ℕ ↦ ( 𝑥 ∈ 𝑋 ↦ 〈 - 𝑗 , 𝑗 〉 ) ) |
2 |
|
hoicvr.3 |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
3 |
|
reex |
⊢ ℝ ∈ V |
4 |
|
mapdm0 |
⊢ ( ℝ ∈ V → ( ℝ ↑m ∅ ) = { ∅ } ) |
5 |
3 4
|
ax-mp |
⊢ ( ℝ ↑m ∅ ) = { ∅ } |
6 |
5
|
a1i |
⊢ ( 𝑋 = ∅ → ( ℝ ↑m ∅ ) = { ∅ } ) |
7 |
|
oveq2 |
⊢ ( 𝑋 = ∅ → ( ℝ ↑m 𝑋 ) = ( ℝ ↑m ∅ ) ) |
8 |
|
ixpeq1 |
⊢ ( 𝑋 = ∅ → X 𝑖 ∈ 𝑋 ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑖 ) = X 𝑖 ∈ ∅ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑖 ) ) |
9 |
8
|
iuneq2d |
⊢ ( 𝑋 = ∅ → ∪ 𝑗 ∈ ℕ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑖 ) = ∪ 𝑗 ∈ ℕ X 𝑖 ∈ ∅ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑖 ) ) |
10 |
|
ixp0x |
⊢ X 𝑖 ∈ ∅ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑖 ) = { ∅ } |
11 |
10
|
a1i |
⊢ ( 𝑗 ∈ ℕ → X 𝑖 ∈ ∅ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑖 ) = { ∅ } ) |
12 |
11
|
iuneq2i |
⊢ ∪ 𝑗 ∈ ℕ X 𝑖 ∈ ∅ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑖 ) = ∪ 𝑗 ∈ ℕ { ∅ } |
13 |
|
1nn |
⊢ 1 ∈ ℕ |
14 |
13
|
ne0ii |
⊢ ℕ ≠ ∅ |
15 |
|
iunconst |
⊢ ( ℕ ≠ ∅ → ∪ 𝑗 ∈ ℕ { ∅ } = { ∅ } ) |
16 |
14 15
|
ax-mp |
⊢ ∪ 𝑗 ∈ ℕ { ∅ } = { ∅ } |
17 |
12 16
|
eqtri |
⊢ ∪ 𝑗 ∈ ℕ X 𝑖 ∈ ∅ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑖 ) = { ∅ } |
18 |
17
|
a1i |
⊢ ( 𝑋 = ∅ → ∪ 𝑗 ∈ ℕ X 𝑖 ∈ ∅ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑖 ) = { ∅ } ) |
19 |
9 18
|
eqtrd |
⊢ ( 𝑋 = ∅ → ∪ 𝑗 ∈ ℕ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑖 ) = { ∅ } ) |
20 |
6 7 19
|
3eqtr4d |
⊢ ( 𝑋 = ∅ → ( ℝ ↑m 𝑋 ) = ∪ 𝑗 ∈ ℕ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑖 ) ) |
21 |
|
eqimss |
⊢ ( ( ℝ ↑m 𝑋 ) = ∪ 𝑗 ∈ ℕ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑖 ) → ( ℝ ↑m 𝑋 ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑖 ) ) |
22 |
20 21
|
syl |
⊢ ( 𝑋 = ∅ → ( ℝ ↑m 𝑋 ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑖 ) ) |
23 |
22
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( ℝ ↑m 𝑋 ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑖 ) ) |
24 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → 𝜑 ) |
25 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) |
26 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → ¬ 𝑋 = ∅ ) |
27 |
|
rncoss |
⊢ ran ( abs ∘ 𝑓 ) ⊆ ran abs |
28 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
29 |
|
frn |
⊢ ( abs : ℂ ⟶ ℝ → ran abs ⊆ ℝ ) |
30 |
28 29
|
ax-mp |
⊢ ran abs ⊆ ℝ |
31 |
27 30
|
sstri |
⊢ ran ( abs ∘ 𝑓 ) ⊆ ℝ |
32 |
31
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ ¬ 𝑋 = ∅ ) → ran ( abs ∘ 𝑓 ) ⊆ ℝ ) |
33 |
|
ltso |
⊢ < Or ℝ |
34 |
33
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ ¬ 𝑋 = ∅ ) → < Or ℝ ) |
35 |
28
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → abs : ℂ ⟶ ℝ ) |
36 |
|
elmapi |
⊢ ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) → 𝑓 : 𝑋 ⟶ ℝ ) |
37 |
36
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → 𝑓 : 𝑋 ⟶ ℝ ) |
38 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
39 |
38
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → ℝ ⊆ ℂ ) |
40 |
37 39
|
fssd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → 𝑓 : 𝑋 ⟶ ℂ ) |
41 |
|
fco |
⊢ ( ( abs : ℂ ⟶ ℝ ∧ 𝑓 : 𝑋 ⟶ ℂ ) → ( abs ∘ 𝑓 ) : 𝑋 ⟶ ℝ ) |
42 |
35 40 41
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → ( abs ∘ 𝑓 ) : 𝑋 ⟶ ℝ ) |
43 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → 𝑋 ∈ Fin ) |
44 |
|
rnffi |
⊢ ( ( ( abs ∘ 𝑓 ) : 𝑋 ⟶ ℝ ∧ 𝑋 ∈ Fin ) → ran ( abs ∘ 𝑓 ) ∈ Fin ) |
45 |
42 43 44
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → ran ( abs ∘ 𝑓 ) ∈ Fin ) |
46 |
45
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ ¬ 𝑋 = ∅ ) → ran ( abs ∘ 𝑓 ) ∈ Fin ) |
47 |
36
|
frnd |
⊢ ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) → ran 𝑓 ⊆ ℝ ) |
48 |
28
|
fdmi |
⊢ dom abs = ℂ |
49 |
48
|
eqcomi |
⊢ ℂ = dom abs |
50 |
38 49
|
sseqtri |
⊢ ℝ ⊆ dom abs |
51 |
50
|
a1i |
⊢ ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) → ℝ ⊆ dom abs ) |
52 |
47 51
|
sstrd |
⊢ ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) → ran 𝑓 ⊆ dom abs ) |
53 |
|
dmcosseq |
⊢ ( ran 𝑓 ⊆ dom abs → dom ( abs ∘ 𝑓 ) = dom 𝑓 ) |
54 |
52 53
|
syl |
⊢ ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) → dom ( abs ∘ 𝑓 ) = dom 𝑓 ) |
55 |
36
|
fdmd |
⊢ ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) → dom 𝑓 = 𝑋 ) |
56 |
54 55
|
eqtrd |
⊢ ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) → dom ( abs ∘ 𝑓 ) = 𝑋 ) |
57 |
56
|
adantr |
⊢ ( ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∧ ¬ 𝑋 = ∅ ) → dom ( abs ∘ 𝑓 ) = 𝑋 ) |
58 |
|
neqne |
⊢ ( ¬ 𝑋 = ∅ → 𝑋 ≠ ∅ ) |
59 |
58
|
adantl |
⊢ ( ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∧ ¬ 𝑋 = ∅ ) → 𝑋 ≠ ∅ ) |
60 |
57 59
|
eqnetrd |
⊢ ( ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∧ ¬ 𝑋 = ∅ ) → dom ( abs ∘ 𝑓 ) ≠ ∅ ) |
61 |
60
|
neneqd |
⊢ ( ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∧ ¬ 𝑋 = ∅ ) → ¬ dom ( abs ∘ 𝑓 ) = ∅ ) |
62 |
|
dm0rn0 |
⊢ ( dom ( abs ∘ 𝑓 ) = ∅ ↔ ran ( abs ∘ 𝑓 ) = ∅ ) |
63 |
61 62
|
sylnib |
⊢ ( ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∧ ¬ 𝑋 = ∅ ) → ¬ ran ( abs ∘ 𝑓 ) = ∅ ) |
64 |
63
|
neqned |
⊢ ( ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∧ ¬ 𝑋 = ∅ ) → ran ( abs ∘ 𝑓 ) ≠ ∅ ) |
65 |
64
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ ¬ 𝑋 = ∅ ) → ran ( abs ∘ 𝑓 ) ≠ ∅ ) |
66 |
|
fisupcl |
⊢ ( ( < Or ℝ ∧ ( ran ( abs ∘ 𝑓 ) ∈ Fin ∧ ran ( abs ∘ 𝑓 ) ≠ ∅ ∧ ran ( abs ∘ 𝑓 ) ⊆ ℝ ) ) → sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) ∈ ran ( abs ∘ 𝑓 ) ) |
67 |
34 46 65 32 66
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ ¬ 𝑋 = ∅ ) → sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) ∈ ran ( abs ∘ 𝑓 ) ) |
68 |
32 67
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ ¬ 𝑋 = ∅ ) → sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) ∈ ℝ ) |
69 |
|
arch |
⊢ ( sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) ∈ ℝ → ∃ 𝑗 ∈ ℕ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) |
70 |
68 69
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ ¬ 𝑋 = ∅ ) → ∃ 𝑗 ∈ ℕ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) |
71 |
37
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → 𝑓 Fn 𝑋 ) |
72 |
71
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ ¬ 𝑋 = ∅ ) ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) → 𝑓 Fn 𝑋 ) |
73 |
72
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ ¬ 𝑋 = ∅ ) ∧ 𝑗 ∈ ℕ ) ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) → 𝑓 Fn 𝑋 ) |
74 |
|
simplll |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑗 ∈ ℕ ) ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ) |
75 |
|
id |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℕ ) |
76 |
75
|
ad3antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑗 ∈ ℕ ) ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → 𝑗 ∈ ℕ ) |
77 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑗 ∈ ℕ ) ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) |
78 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑗 ∈ ℕ ) ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → 𝑖 ∈ 𝑋 ) |
79 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑗 ∈ ℕ ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) → 𝑗 ∈ ℕ ) |
80 |
|
zssre |
⊢ ℤ ⊆ ℝ |
81 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
82 |
80 81
|
sstri |
⊢ ℤ ⊆ ℝ* |
83 |
|
nnnegz |
⊢ ( 𝑗 ∈ ℕ → - 𝑗 ∈ ℤ ) |
84 |
82 83
|
sselid |
⊢ ( 𝑗 ∈ ℕ → - 𝑗 ∈ ℝ* ) |
85 |
84
|
adantr |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑖 ∈ 𝑋 ) → - 𝑗 ∈ ℝ* ) |
86 |
79 85
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑗 ∈ ℕ ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → - 𝑗 ∈ ℝ* ) |
87 |
75
|
nnxrd |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℝ* ) |
88 |
87
|
adantr |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑖 ∈ 𝑋 ) → 𝑗 ∈ ℝ* ) |
89 |
79 88
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑗 ∈ ℕ ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → 𝑗 ∈ ℝ* ) |
90 |
36
|
3ad2ant1 |
⊢ ( ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∧ 𝑗 ∈ ℕ ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) → 𝑓 : 𝑋 ⟶ ℝ ) |
91 |
81
|
a1i |
⊢ ( ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∧ 𝑗 ∈ ℕ ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) → ℝ ⊆ ℝ* ) |
92 |
90 91
|
fssd |
⊢ ( ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∧ 𝑗 ∈ ℕ ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) → 𝑓 : 𝑋 ⟶ ℝ* ) |
93 |
92
|
3adant1l |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑗 ∈ ℕ ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) → 𝑓 : 𝑋 ⟶ ℝ* ) |
94 |
93
|
ffvelrnda |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑗 ∈ ℕ ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑖 ) ∈ ℝ* ) |
95 |
|
nnre |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℝ ) |
96 |
95
|
adantr |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑖 ∈ 𝑋 ) → 𝑗 ∈ ℝ ) |
97 |
96
|
3ad2antl2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑗 ∈ ℕ ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → 𝑗 ∈ ℝ ) |
98 |
97
|
renegcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑗 ∈ ℕ ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → - 𝑗 ∈ ℝ ) |
99 |
37
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑖 ) ∈ ℝ ) |
100 |
99
|
3ad2antl1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑗 ∈ ℕ ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑖 ) ∈ ℝ ) |
101 |
100
|
renegcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑗 ∈ ℕ ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → - ( 𝑓 ‘ 𝑖 ) ∈ ℝ ) |
102 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑖 ∈ 𝑋 ) → 𝜑 ) |
103 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑖 ∈ 𝑋 ) → 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) |
104 |
|
n0i |
⊢ ( 𝑖 ∈ 𝑋 → ¬ 𝑋 = ∅ ) |
105 |
104
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑖 ∈ 𝑋 ) → ¬ 𝑋 = ∅ ) |
106 |
102 103 105 68
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑖 ∈ 𝑋 ) → sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) ∈ ℝ ) |
107 |
106
|
3ad2antl1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑗 ∈ ℕ ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) ∈ ℝ ) |
108 |
36
|
ffvelrnda |
⊢ ( ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑖 ) ∈ ℝ ) |
109 |
38 108
|
sselid |
⊢ ( ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑖 ) ∈ ℂ ) |
110 |
109
|
abscld |
⊢ ( ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∧ 𝑖 ∈ 𝑋 ) → ( abs ‘ ( 𝑓 ‘ 𝑖 ) ) ∈ ℝ ) |
111 |
110
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑖 ∈ 𝑋 ) → ( abs ‘ ( 𝑓 ‘ 𝑖 ) ) ∈ ℝ ) |
112 |
111
|
3ad2antl1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑗 ∈ ℕ ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → ( abs ‘ ( 𝑓 ‘ 𝑖 ) ) ∈ ℝ ) |
113 |
108
|
renegcld |
⊢ ( ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∧ 𝑖 ∈ 𝑋 ) → - ( 𝑓 ‘ 𝑖 ) ∈ ℝ ) |
114 |
113
|
leabsd |
⊢ ( ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∧ 𝑖 ∈ 𝑋 ) → - ( 𝑓 ‘ 𝑖 ) ≤ ( abs ‘ - ( 𝑓 ‘ 𝑖 ) ) ) |
115 |
109
|
absnegd |
⊢ ( ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∧ 𝑖 ∈ 𝑋 ) → ( abs ‘ - ( 𝑓 ‘ 𝑖 ) ) = ( abs ‘ ( 𝑓 ‘ 𝑖 ) ) ) |
116 |
114 115
|
breqtrd |
⊢ ( ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∧ 𝑖 ∈ 𝑋 ) → - ( 𝑓 ‘ 𝑖 ) ≤ ( abs ‘ ( 𝑓 ‘ 𝑖 ) ) ) |
117 |
116
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑖 ∈ 𝑋 ) → - ( 𝑓 ‘ 𝑖 ) ≤ ( abs ‘ ( 𝑓 ‘ 𝑖 ) ) ) |
118 |
117
|
3ad2antl1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑗 ∈ ℕ ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → - ( 𝑓 ‘ 𝑖 ) ≤ ( abs ‘ ( 𝑓 ‘ 𝑖 ) ) ) |
119 |
31
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑗 ∈ ℕ ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → ran ( abs ∘ 𝑓 ) ⊆ ℝ ) |
120 |
105 65
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑖 ∈ 𝑋 ) → ran ( abs ∘ 𝑓 ) ≠ ∅ ) |
121 |
120
|
3ad2antl1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑗 ∈ ℕ ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → ran ( abs ∘ 𝑓 ) ≠ ∅ ) |
122 |
|
fimaxre2 |
⊢ ( ( ran ( abs ∘ 𝑓 ) ⊆ ℝ ∧ ran ( abs ∘ 𝑓 ) ∈ Fin ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( abs ∘ 𝑓 ) 𝑧 ≤ 𝑦 ) |
123 |
31 45 122
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( abs ∘ 𝑓 ) 𝑧 ≤ 𝑦 ) |
124 |
123
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑖 ∈ 𝑋 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( abs ∘ 𝑓 ) 𝑧 ≤ 𝑦 ) |
125 |
124
|
3ad2antl1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑗 ∈ ℕ ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( abs ∘ 𝑓 ) 𝑧 ≤ 𝑦 ) |
126 |
|
elmapfun |
⊢ ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) → Fun 𝑓 ) |
127 |
126
|
adantr |
⊢ ( ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∧ 𝑖 ∈ 𝑋 ) → Fun 𝑓 ) |
128 |
|
simpr |
⊢ ( ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∧ 𝑖 ∈ 𝑋 ) → 𝑖 ∈ 𝑋 ) |
129 |
55
|
eqcomd |
⊢ ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) → 𝑋 = dom 𝑓 ) |
130 |
129
|
adantr |
⊢ ( ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∧ 𝑖 ∈ 𝑋 ) → 𝑋 = dom 𝑓 ) |
131 |
128 130
|
eleqtrd |
⊢ ( ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∧ 𝑖 ∈ 𝑋 ) → 𝑖 ∈ dom 𝑓 ) |
132 |
|
fvco |
⊢ ( ( Fun 𝑓 ∧ 𝑖 ∈ dom 𝑓 ) → ( ( abs ∘ 𝑓 ) ‘ 𝑖 ) = ( abs ‘ ( 𝑓 ‘ 𝑖 ) ) ) |
133 |
127 131 132
|
syl2anc |
⊢ ( ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( abs ∘ 𝑓 ) ‘ 𝑖 ) = ( abs ‘ ( 𝑓 ‘ 𝑖 ) ) ) |
134 |
133
|
eqcomd |
⊢ ( ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∧ 𝑖 ∈ 𝑋 ) → ( abs ‘ ( 𝑓 ‘ 𝑖 ) ) = ( ( abs ∘ 𝑓 ) ‘ 𝑖 ) ) |
135 |
|
absfun |
⊢ Fun abs |
136 |
135
|
a1i |
⊢ ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) → Fun abs ) |
137 |
|
funco |
⊢ ( ( Fun abs ∧ Fun 𝑓 ) → Fun ( abs ∘ 𝑓 ) ) |
138 |
136 126 137
|
syl2anc |
⊢ ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) → Fun ( abs ∘ 𝑓 ) ) |
139 |
138
|
adantr |
⊢ ( ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∧ 𝑖 ∈ 𝑋 ) → Fun ( abs ∘ 𝑓 ) ) |
140 |
109 49
|
eleqtrdi |
⊢ ( ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑖 ) ∈ dom abs ) |
141 |
|
dmfco |
⊢ ( ( Fun 𝑓 ∧ 𝑖 ∈ dom 𝑓 ) → ( 𝑖 ∈ dom ( abs ∘ 𝑓 ) ↔ ( 𝑓 ‘ 𝑖 ) ∈ dom abs ) ) |
142 |
127 131 141
|
syl2anc |
⊢ ( ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑖 ∈ dom ( abs ∘ 𝑓 ) ↔ ( 𝑓 ‘ 𝑖 ) ∈ dom abs ) ) |
143 |
140 142
|
mpbird |
⊢ ( ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∧ 𝑖 ∈ 𝑋 ) → 𝑖 ∈ dom ( abs ∘ 𝑓 ) ) |
144 |
|
fvelrn |
⊢ ( ( Fun ( abs ∘ 𝑓 ) ∧ 𝑖 ∈ dom ( abs ∘ 𝑓 ) ) → ( ( abs ∘ 𝑓 ) ‘ 𝑖 ) ∈ ran ( abs ∘ 𝑓 ) ) |
145 |
139 143 144
|
syl2anc |
⊢ ( ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( abs ∘ 𝑓 ) ‘ 𝑖 ) ∈ ran ( abs ∘ 𝑓 ) ) |
146 |
134 145
|
eqeltrd |
⊢ ( ( 𝑓 ∈ ( ℝ ↑m 𝑋 ) ∧ 𝑖 ∈ 𝑋 ) → ( abs ‘ ( 𝑓 ‘ 𝑖 ) ) ∈ ran ( abs ∘ 𝑓 ) ) |
147 |
146
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑖 ∈ 𝑋 ) → ( abs ‘ ( 𝑓 ‘ 𝑖 ) ) ∈ ran ( abs ∘ 𝑓 ) ) |
148 |
147
|
3ad2antl1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑗 ∈ ℕ ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → ( abs ‘ ( 𝑓 ‘ 𝑖 ) ) ∈ ran ( abs ∘ 𝑓 ) ) |
149 |
|
suprub |
⊢ ( ( ( ran ( abs ∘ 𝑓 ) ⊆ ℝ ∧ ran ( abs ∘ 𝑓 ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( abs ∘ 𝑓 ) 𝑧 ≤ 𝑦 ) ∧ ( abs ‘ ( 𝑓 ‘ 𝑖 ) ) ∈ ran ( abs ∘ 𝑓 ) ) → ( abs ‘ ( 𝑓 ‘ 𝑖 ) ) ≤ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) ) |
150 |
119 121 125 148 149
|
syl31anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑗 ∈ ℕ ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → ( abs ‘ ( 𝑓 ‘ 𝑖 ) ) ≤ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) ) |
151 |
101 112 107 118 150
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑗 ∈ ℕ ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → - ( 𝑓 ‘ 𝑖 ) ≤ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) ) |
152 |
|
simpl3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑗 ∈ ℕ ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) |
153 |
101 107 97 151 152
|
lelttrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑗 ∈ ℕ ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → - ( 𝑓 ‘ 𝑖 ) < 𝑗 ) |
154 |
101 97
|
ltnegd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑗 ∈ ℕ ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → ( - ( 𝑓 ‘ 𝑖 ) < 𝑗 ↔ - 𝑗 < - - ( 𝑓 ‘ 𝑖 ) ) ) |
155 |
153 154
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑗 ∈ ℕ ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → - 𝑗 < - - ( 𝑓 ‘ 𝑖 ) ) |
156 |
38 100
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑗 ∈ ℕ ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑖 ) ∈ ℂ ) |
157 |
156
|
negnegd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑗 ∈ ℕ ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → - - ( 𝑓 ‘ 𝑖 ) = ( 𝑓 ‘ 𝑖 ) ) |
158 |
155 157
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑗 ∈ ℕ ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → - 𝑗 < ( 𝑓 ‘ 𝑖 ) ) |
159 |
98 100 158
|
ltled |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑗 ∈ ℕ ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → - 𝑗 ≤ ( 𝑓 ‘ 𝑖 ) ) |
160 |
100
|
leabsd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑗 ∈ ℕ ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑖 ) ≤ ( abs ‘ ( 𝑓 ‘ 𝑖 ) ) ) |
161 |
100 112 107 160 150
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑗 ∈ ℕ ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑖 ) ≤ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) ) |
162 |
100 107 97 161 152
|
lelttrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑗 ∈ ℕ ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑖 ) < 𝑗 ) |
163 |
86 89 94 159 162
|
elicod |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑗 ∈ ℕ ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑖 ) ∈ ( - 𝑗 [,) 𝑗 ) ) |
164 |
74 76 77 78 163
|
syl31anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑗 ∈ ℕ ) ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑖 ) ∈ ( - 𝑗 [,) 𝑗 ) ) |
165 |
164
|
adantl3r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ ¬ 𝑋 = ∅ ) ∧ 𝑗 ∈ ℕ ) ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑖 ) ∈ ( - 𝑗 [,) 𝑗 ) ) |
166 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ ) |
167 |
|
mptexg |
⊢ ( 𝑋 ∈ Fin → ( 𝑥 ∈ 𝑋 ↦ 〈 - 𝑗 , 𝑗 〉 ) ∈ V ) |
168 |
2 167
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 〈 - 𝑗 , 𝑗 〉 ) ∈ V ) |
169 |
168
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑥 ∈ 𝑋 ↦ 〈 - 𝑗 , 𝑗 〉 ) ∈ V ) |
170 |
1
|
fvmpt2 |
⊢ ( ( 𝑗 ∈ ℕ ∧ ( 𝑥 ∈ 𝑋 ↦ 〈 - 𝑗 , 𝑗 〉 ) ∈ V ) → ( 𝐼 ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ 〈 - 𝑗 , 𝑗 〉 ) ) |
171 |
166 169 170
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐼 ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ 〈 - 𝑗 , 𝑗 〉 ) ) |
172 |
171
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐼 ‘ 𝑗 ) ‘ 𝑖 ) = ( ( 𝑥 ∈ 𝑋 ↦ 〈 - 𝑗 , 𝑗 〉 ) ‘ 𝑖 ) ) |
173 |
172
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐼 ‘ 𝑗 ) ‘ 𝑖 ) = ( ( 𝑥 ∈ 𝑋 ↦ 〈 - 𝑗 , 𝑗 〉 ) ‘ 𝑖 ) ) |
174 |
|
eqidd |
⊢ ( 𝑖 ∈ 𝑋 → ( 𝑥 ∈ 𝑋 ↦ 〈 - 𝑗 , 𝑗 〉 ) = ( 𝑥 ∈ 𝑋 ↦ 〈 - 𝑗 , 𝑗 〉 ) ) |
175 |
|
eqid |
⊢ 〈 - 𝑗 , 𝑗 〉 = 〈 - 𝑗 , 𝑗 〉 |
176 |
175
|
a1i |
⊢ ( ( 𝑖 ∈ 𝑋 ∧ 𝑥 = 𝑖 ) → 〈 - 𝑗 , 𝑗 〉 = 〈 - 𝑗 , 𝑗 〉 ) |
177 |
|
id |
⊢ ( 𝑖 ∈ 𝑋 → 𝑖 ∈ 𝑋 ) |
178 |
|
opex |
⊢ 〈 - 𝑗 , 𝑗 〉 ∈ V |
179 |
178
|
a1i |
⊢ ( 𝑖 ∈ 𝑋 → 〈 - 𝑗 , 𝑗 〉 ∈ V ) |
180 |
174 176 177 179
|
fvmptd |
⊢ ( 𝑖 ∈ 𝑋 → ( ( 𝑥 ∈ 𝑋 ↦ 〈 - 𝑗 , 𝑗 〉 ) ‘ 𝑖 ) = 〈 - 𝑗 , 𝑗 〉 ) |
181 |
180
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ 〈 - 𝑗 , 𝑗 〉 ) ‘ 𝑖 ) = 〈 - 𝑗 , 𝑗 〉 ) |
182 |
173 181
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐼 ‘ 𝑗 ) ‘ 𝑖 ) = 〈 - 𝑗 , 𝑗 〉 ) |
183 |
182
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑖 ∈ 𝑋 ) → ( 1st ‘ ( ( 𝐼 ‘ 𝑗 ) ‘ 𝑖 ) ) = ( 1st ‘ 〈 - 𝑗 , 𝑗 〉 ) ) |
184 |
|
negex |
⊢ - 𝑗 ∈ V |
185 |
|
vex |
⊢ 𝑗 ∈ V |
186 |
184 185
|
op1st |
⊢ ( 1st ‘ 〈 - 𝑗 , 𝑗 〉 ) = - 𝑗 |
187 |
186
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑖 ∈ 𝑋 ) → ( 1st ‘ 〈 - 𝑗 , 𝑗 〉 ) = - 𝑗 ) |
188 |
183 187
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑖 ∈ 𝑋 ) → ( 1st ‘ ( ( 𝐼 ‘ 𝑗 ) ‘ 𝑖 ) ) = - 𝑗 ) |
189 |
182
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑖 ∈ 𝑋 ) → ( 2nd ‘ ( ( 𝐼 ‘ 𝑗 ) ‘ 𝑖 ) ) = ( 2nd ‘ 〈 - 𝑗 , 𝑗 〉 ) ) |
190 |
184 185
|
op2nd |
⊢ ( 2nd ‘ 〈 - 𝑗 , 𝑗 〉 ) = 𝑗 |
191 |
190
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑖 ∈ 𝑋 ) → ( 2nd ‘ 〈 - 𝑗 , 𝑗 〉 ) = 𝑗 ) |
192 |
189 191
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑖 ∈ 𝑋 ) → ( 2nd ‘ ( ( 𝐼 ‘ 𝑗 ) ‘ 𝑖 ) ) = 𝑗 ) |
193 |
188 192
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑖 ∈ 𝑋 ) → ( ( 1st ‘ ( ( 𝐼 ‘ 𝑗 ) ‘ 𝑖 ) ) [,) ( 2nd ‘ ( ( 𝐼 ‘ 𝑗 ) ‘ 𝑖 ) ) ) = ( - 𝑗 [,) 𝑗 ) ) |
194 |
193
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑖 ∈ 𝑋 ) → ( - 𝑗 [,) 𝑗 ) = ( ( 1st ‘ ( ( 𝐼 ‘ 𝑗 ) ‘ 𝑖 ) ) [,) ( 2nd ‘ ( ( 𝐼 ‘ 𝑗 ) ‘ 𝑖 ) ) ) ) |
195 |
194
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ 𝑗 ∈ ℕ ∧ 𝑖 ∈ 𝑋 ) → ( - 𝑗 [,) 𝑗 ) = ( ( 1st ‘ ( ( 𝐼 ‘ 𝑗 ) ‘ 𝑖 ) ) [,) ( 2nd ‘ ( ( 𝐼 ‘ 𝑗 ) ‘ 𝑖 ) ) ) ) |
196 |
195
|
ad5ant135 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ ¬ 𝑋 = ∅ ) ∧ 𝑗 ∈ ℕ ) ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → ( - 𝑗 [,) 𝑗 ) = ( ( 1st ‘ ( ( 𝐼 ‘ 𝑗 ) ‘ 𝑖 ) ) [,) ( 2nd ‘ ( ( 𝐼 ‘ 𝑗 ) ‘ 𝑖 ) ) ) ) |
197 |
165 196
|
eleqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ ¬ 𝑋 = ∅ ) ∧ 𝑗 ∈ ℕ ) ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑖 ) ∈ ( ( 1st ‘ ( ( 𝐼 ‘ 𝑗 ) ‘ 𝑖 ) ) [,) ( 2nd ‘ ( ( 𝐼 ‘ 𝑗 ) ‘ 𝑖 ) ) ) ) |
198 |
80 83
|
sselid |
⊢ ( 𝑗 ∈ ℕ → - 𝑗 ∈ ℝ ) |
199 |
|
opelxpi |
⊢ ( ( - 𝑗 ∈ ℝ ∧ 𝑗 ∈ ℝ ) → 〈 - 𝑗 , 𝑗 〉 ∈ ( ℝ × ℝ ) ) |
200 |
198 95 199
|
syl2anc |
⊢ ( 𝑗 ∈ ℕ → 〈 - 𝑗 , 𝑗 〉 ∈ ( ℝ × ℝ ) ) |
201 |
200
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 ∈ 𝑋 ) → 〈 - 𝑗 , 𝑗 〉 ∈ ( ℝ × ℝ ) ) |
202 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ 〈 - 𝑗 , 𝑗 〉 ) = ( 𝑥 ∈ 𝑋 ↦ 〈 - 𝑗 , 𝑗 〉 ) |
203 |
201 202
|
fmptd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑥 ∈ 𝑋 ↦ 〈 - 𝑗 , 𝑗 〉 ) : 𝑋 ⟶ ( ℝ × ℝ ) ) |
204 |
171
|
feq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐼 ‘ 𝑗 ) : 𝑋 ⟶ ( ℝ × ℝ ) ↔ ( 𝑥 ∈ 𝑋 ↦ 〈 - 𝑗 , 𝑗 〉 ) : 𝑋 ⟶ ( ℝ × ℝ ) ) ) |
205 |
203 204
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐼 ‘ 𝑗 ) : 𝑋 ⟶ ( ℝ × ℝ ) ) |
206 |
205
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ ¬ 𝑋 = ∅ ) ∧ 𝑗 ∈ ℕ ) → ( 𝐼 ‘ 𝑗 ) : 𝑋 ⟶ ( ℝ × ℝ ) ) |
207 |
206
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ ¬ 𝑋 = ∅ ) ∧ 𝑗 ∈ ℕ ) ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝐼 ‘ 𝑗 ) : 𝑋 ⟶ ( ℝ × ℝ ) ) |
208 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ ¬ 𝑋 = ∅ ) ∧ 𝑗 ∈ ℕ ) ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → 𝑖 ∈ 𝑋 ) |
209 |
207 208
|
fvovco |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ ¬ 𝑋 = ∅ ) ∧ 𝑗 ∈ ℕ ) ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑖 ) = ( ( 1st ‘ ( ( 𝐼 ‘ 𝑗 ) ‘ 𝑖 ) ) [,) ( 2nd ‘ ( ( 𝐼 ‘ 𝑗 ) ‘ 𝑖 ) ) ) ) |
210 |
209
|
eqcomd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ ¬ 𝑋 = ∅ ) ∧ 𝑗 ∈ ℕ ) ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 1st ‘ ( ( 𝐼 ‘ 𝑗 ) ‘ 𝑖 ) ) [,) ( 2nd ‘ ( ( 𝐼 ‘ 𝑗 ) ‘ 𝑖 ) ) ) = ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑖 ) ) |
211 |
197 210
|
eleqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ ¬ 𝑋 = ∅ ) ∧ 𝑗 ∈ ℕ ) ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑖 ) ∈ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑖 ) ) |
212 |
211
|
ralrimiva |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ ¬ 𝑋 = ∅ ) ∧ 𝑗 ∈ ℕ ) ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) → ∀ 𝑖 ∈ 𝑋 ( 𝑓 ‘ 𝑖 ) ∈ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑖 ) ) |
213 |
73 212
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ ¬ 𝑋 = ∅ ) ∧ 𝑗 ∈ ℕ ) ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) → ( 𝑓 Fn 𝑋 ∧ ∀ 𝑖 ∈ 𝑋 ( 𝑓 ‘ 𝑖 ) ∈ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑖 ) ) ) |
214 |
|
vex |
⊢ 𝑓 ∈ V |
215 |
214
|
elixp |
⊢ ( 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑖 ) ↔ ( 𝑓 Fn 𝑋 ∧ ∀ 𝑖 ∈ 𝑋 ( 𝑓 ‘ 𝑖 ) ∈ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑖 ) ) ) |
216 |
213 215
|
sylibr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ ¬ 𝑋 = ∅ ) ∧ 𝑗 ∈ ℕ ) ∧ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 ) → 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑖 ) ) |
217 |
216
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ ¬ 𝑋 = ∅ ) ∧ 𝑗 ∈ ℕ ) → ( sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 → 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑖 ) ) ) |
218 |
217
|
reximdva |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ ¬ 𝑋 = ∅ ) → ( ∃ 𝑗 ∈ ℕ sup ( ran ( abs ∘ 𝑓 ) , ℝ , < ) < 𝑗 → ∃ 𝑗 ∈ ℕ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑖 ) ) ) |
219 |
70 218
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ∧ ¬ 𝑋 = ∅ ) → ∃ 𝑗 ∈ ℕ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑖 ) ) |
220 |
24 25 26 219
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → ∃ 𝑗 ∈ ℕ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑖 ) ) |
221 |
|
eliun |
⊢ ( 𝑓 ∈ ∪ 𝑗 ∈ ℕ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑖 ) ↔ ∃ 𝑗 ∈ ℕ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑖 ) ) |
222 |
220 221
|
sylibr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) → 𝑓 ∈ ∪ 𝑗 ∈ ℕ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑖 ) ) |
223 |
222
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ∀ 𝑓 ∈ ( ℝ ↑m 𝑋 ) 𝑓 ∈ ∪ 𝑗 ∈ ℕ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑖 ) ) |
224 |
|
dfss3 |
⊢ ( ( ℝ ↑m 𝑋 ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑖 ) ↔ ∀ 𝑓 ∈ ( ℝ ↑m 𝑋 ) 𝑓 ∈ ∪ 𝑗 ∈ ℕ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑖 ) ) |
225 |
223 224
|
sylibr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ( ℝ ↑m 𝑋 ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑖 ) ) |
226 |
23 225
|
pm2.61dan |
⊢ ( 𝜑 → ( ℝ ↑m 𝑋 ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑖 ) ) |