Step |
Hyp |
Ref |
Expression |
1 |
|
hoiprodcl2.kph |
|- F/ k ph |
2 |
|
hoiprodcl2.x |
|- ( ph -> X e. Fin ) |
3 |
|
hoiprodcl2.l |
|- L = ( i e. ( ( RR X. RR ) ^m X ) |-> prod_ k e. X ( vol ` ( ( [,) o. i ) ` k ) ) ) |
4 |
|
hoiprodcl2.i |
|- ( ph -> I : X --> ( RR X. RR ) ) |
5 |
|
coeq2 |
|- ( i = I -> ( [,) o. i ) = ( [,) o. I ) ) |
6 |
5
|
fveq1d |
|- ( i = I -> ( ( [,) o. i ) ` k ) = ( ( [,) o. I ) ` k ) ) |
7 |
6
|
fveq2d |
|- ( i = I -> ( vol ` ( ( [,) o. i ) ` k ) ) = ( vol ` ( ( [,) o. I ) ` k ) ) ) |
8 |
7
|
ralrimivw |
|- ( i = I -> A. k e. X ( vol ` ( ( [,) o. i ) ` k ) ) = ( vol ` ( ( [,) o. I ) ` k ) ) ) |
9 |
8
|
prodeq2d |
|- ( i = I -> prod_ k e. X ( vol ` ( ( [,) o. i ) ` k ) ) = prod_ k e. X ( vol ` ( ( [,) o. I ) ` k ) ) ) |
10 |
|
reex |
|- RR e. _V |
11 |
10 10
|
xpex |
|- ( RR X. RR ) e. _V |
12 |
11
|
a1i |
|- ( ph -> ( RR X. RR ) e. _V ) |
13 |
12 2
|
jca |
|- ( ph -> ( ( RR X. RR ) e. _V /\ X e. Fin ) ) |
14 |
|
elmapg |
|- ( ( ( RR X. RR ) e. _V /\ X e. Fin ) -> ( I e. ( ( RR X. RR ) ^m X ) <-> I : X --> ( RR X. RR ) ) ) |
15 |
13 14
|
syl |
|- ( ph -> ( I e. ( ( RR X. RR ) ^m X ) <-> I : X --> ( RR X. RR ) ) ) |
16 |
4 15
|
mpbird |
|- ( ph -> I e. ( ( RR X. RR ) ^m X ) ) |
17 |
1 2 4
|
hoiprodcl |
|- ( ph -> prod_ k e. X ( vol ` ( ( [,) o. I ) ` k ) ) e. ( 0 [,) +oo ) ) |
18 |
3 9 16 17
|
fvmptd3 |
|- ( ph -> ( L ` I ) = prod_ k e. X ( vol ` ( ( [,) o. I ) ` k ) ) ) |
19 |
18 17
|
eqeltrd |
|- ( ph -> ( L ` I ) e. ( 0 [,) +oo ) ) |