Step |
Hyp |
Ref |
Expression |
1 |
|
hoiprodcl2.kph |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
hoiprodcl2.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
3 |
|
hoiprodcl2.l |
⊢ 𝐿 = ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑘 ) ) ) |
4 |
|
hoiprodcl2.i |
⊢ ( 𝜑 → 𝐼 : 𝑋 ⟶ ( ℝ × ℝ ) ) |
5 |
|
coeq2 |
⊢ ( 𝑖 = 𝐼 → ( [,) ∘ 𝑖 ) = ( [,) ∘ 𝐼 ) ) |
6 |
5
|
fveq1d |
⊢ ( 𝑖 = 𝐼 → ( ( [,) ∘ 𝑖 ) ‘ 𝑘 ) = ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ) |
7 |
6
|
fveq2d |
⊢ ( 𝑖 = 𝐼 → ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑘 ) ) = ( vol ‘ ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ) ) |
8 |
7
|
ralrimivw |
⊢ ( 𝑖 = 𝐼 → ∀ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑘 ) ) = ( vol ‘ ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ) ) |
9 |
8
|
prodeq2d |
⊢ ( 𝑖 = 𝐼 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑘 ) ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ) ) |
10 |
|
reex |
⊢ ℝ ∈ V |
11 |
10 10
|
xpex |
⊢ ( ℝ × ℝ ) ∈ V |
12 |
11
|
a1i |
⊢ ( 𝜑 → ( ℝ × ℝ ) ∈ V ) |
13 |
12 2
|
jca |
⊢ ( 𝜑 → ( ( ℝ × ℝ ) ∈ V ∧ 𝑋 ∈ Fin ) ) |
14 |
|
elmapg |
⊢ ( ( ( ℝ × ℝ ) ∈ V ∧ 𝑋 ∈ Fin ) → ( 𝐼 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↔ 𝐼 : 𝑋 ⟶ ( ℝ × ℝ ) ) ) |
15 |
13 14
|
syl |
⊢ ( 𝜑 → ( 𝐼 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↔ 𝐼 : 𝑋 ⟶ ( ℝ × ℝ ) ) ) |
16 |
4 15
|
mpbird |
⊢ ( 𝜑 → 𝐼 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ) |
17 |
1 2 4
|
hoiprodcl |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ) ∈ ( 0 [,) +∞ ) ) |
18 |
3 9 16 17
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐼 ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ) ) |
19 |
18 17
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐼 ) ∈ ( 0 [,) +∞ ) ) |