Metamath Proof Explorer


Theorem hoiprodcl2

Description: The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses hoiprodcl2.kph 𝑘 𝜑
hoiprodcl2.x ( 𝜑𝑋 ∈ Fin )
hoiprodcl2.l 𝐿 = ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑘𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑘 ) ) )
hoiprodcl2.i ( 𝜑𝐼 : 𝑋 ⟶ ( ℝ × ℝ ) )
Assertion hoiprodcl2 ( 𝜑 → ( 𝐿𝐼 ) ∈ ( 0 [,) +∞ ) )

Proof

Step Hyp Ref Expression
1 hoiprodcl2.kph 𝑘 𝜑
2 hoiprodcl2.x ( 𝜑𝑋 ∈ Fin )
3 hoiprodcl2.l 𝐿 = ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑘𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑘 ) ) )
4 hoiprodcl2.i ( 𝜑𝐼 : 𝑋 ⟶ ( ℝ × ℝ ) )
5 coeq2 ( 𝑖 = 𝐼 → ( [,) ∘ 𝑖 ) = ( [,) ∘ 𝐼 ) )
6 5 fveq1d ( 𝑖 = 𝐼 → ( ( [,) ∘ 𝑖 ) ‘ 𝑘 ) = ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) )
7 6 fveq2d ( 𝑖 = 𝐼 → ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑘 ) ) = ( vol ‘ ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ) )
8 7 ralrimivw ( 𝑖 = 𝐼 → ∀ 𝑘𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑘 ) ) = ( vol ‘ ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ) )
9 8 prodeq2d ( 𝑖 = 𝐼 → ∏ 𝑘𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑘 ) ) = ∏ 𝑘𝑋 ( vol ‘ ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ) )
10 reex ℝ ∈ V
11 10 10 xpex ( ℝ × ℝ ) ∈ V
12 11 a1i ( 𝜑 → ( ℝ × ℝ ) ∈ V )
13 12 2 jca ( 𝜑 → ( ( ℝ × ℝ ) ∈ V ∧ 𝑋 ∈ Fin ) )
14 elmapg ( ( ( ℝ × ℝ ) ∈ V ∧ 𝑋 ∈ Fin ) → ( 𝐼 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↔ 𝐼 : 𝑋 ⟶ ( ℝ × ℝ ) ) )
15 13 14 syl ( 𝜑 → ( 𝐼 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↔ 𝐼 : 𝑋 ⟶ ( ℝ × ℝ ) ) )
16 4 15 mpbird ( 𝜑𝐼 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) )
17 1 2 4 hoiprodcl ( 𝜑 → ∏ 𝑘𝑋 ( vol ‘ ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ) ∈ ( 0 [,) +∞ ) )
18 3 9 16 17 fvmptd3 ( 𝜑 → ( 𝐿𝐼 ) = ∏ 𝑘𝑋 ( vol ‘ ( ( [,) ∘ 𝐼 ) ‘ 𝑘 ) ) )
19 18 17 eqeltrd ( 𝜑 → ( 𝐿𝐼 ) ∈ ( 0 [,) +∞ ) )