Metamath Proof Explorer


Theorem hoiprodcl2

Description: The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses hoiprodcl2.kph kφ
hoiprodcl2.x φXFin
hoiprodcl2.l L=i2XkXvol.ik
hoiprodcl2.i φI:X2
Assertion hoiprodcl2 φLI0+∞

Proof

Step Hyp Ref Expression
1 hoiprodcl2.kph kφ
2 hoiprodcl2.x φXFin
3 hoiprodcl2.l L=i2XkXvol.ik
4 hoiprodcl2.i φI:X2
5 coeq2 i=I.i=.I
6 5 fveq1d i=I.ik=.Ik
7 6 fveq2d i=Ivol.ik=vol.Ik
8 7 ralrimivw i=IkXvol.ik=vol.Ik
9 8 prodeq2d i=IkXvol.ik=kXvol.Ik
10 reex V
11 10 10 xpex 2V
12 11 a1i φ2V
13 12 2 jca φ2VXFin
14 elmapg 2VXFinI2XI:X2
15 13 14 syl φI2XI:X2
16 4 15 mpbird φI2X
17 1 2 4 hoiprodcl φkXvol.Ik0+∞
18 3 9 16 17 fvmptd3 φLI=kXvol.Ik
19 18 17 eqeltrd φLI0+∞