Metamath Proof Explorer


Theorem hoiprodcl2

Description: The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses hoiprodcl2.kph k φ
hoiprodcl2.x φ X Fin
hoiprodcl2.l L = i 2 X k X vol . i k
hoiprodcl2.i φ I : X 2
Assertion hoiprodcl2 φ L I 0 +∞

Proof

Step Hyp Ref Expression
1 hoiprodcl2.kph k φ
2 hoiprodcl2.x φ X Fin
3 hoiprodcl2.l L = i 2 X k X vol . i k
4 hoiprodcl2.i φ I : X 2
5 coeq2 i = I . i = . I
6 5 fveq1d i = I . i k = . I k
7 6 fveq2d i = I vol . i k = vol . I k
8 7 ralrimivw i = I k X vol . i k = vol . I k
9 8 prodeq2d i = I k X vol . i k = k X vol . I k
10 reex V
11 10 10 xpex 2 V
12 11 a1i φ 2 V
13 12 2 jca φ 2 V X Fin
14 elmapg 2 V X Fin I 2 X I : X 2
15 13 14 syl φ I 2 X I : X 2
16 4 15 mpbird φ I 2 X
17 1 2 4 hoiprodcl φ k X vol . I k 0 +∞
18 3 9 16 17 fvmptd3 φ L I = k X vol . I k
19 18 17 eqeltrd φ L I 0 +∞