Description: The product used in the definition of the outer Lebesgue measure in R^n is a nonnegative real. (Contributed by Glauco Siliprandi, 11-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ovnprodcl.kph | ⊢ Ⅎ 𝑘 𝜑 | |
ovnprodcl.x | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | ||
ovnprodcl.f | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ( ℝ × ℝ ) ↑m 𝑋 ) ) | ||
ovnprodcl.i | ⊢ ( 𝜑 → 𝐼 ∈ ℕ ) | ||
Assertion | ovnprodcl | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐹 ‘ 𝐼 ) ) ‘ 𝑘 ) ) ∈ ( 0 [,) +∞ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovnprodcl.kph | ⊢ Ⅎ 𝑘 𝜑 | |
2 | ovnprodcl.x | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | |
3 | ovnprodcl.f | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ( ℝ × ℝ ) ↑m 𝑋 ) ) | |
4 | ovnprodcl.i | ⊢ ( 𝜑 → 𝐼 ∈ ℕ ) | |
5 | 3 4 | ffvelrnd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐼 ) ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ) |
6 | elmapi | ⊢ ( ( 𝐹 ‘ 𝐼 ) ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) → ( 𝐹 ‘ 𝐼 ) : 𝑋 ⟶ ( ℝ × ℝ ) ) | |
7 | 5 6 | syl | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐼 ) : 𝑋 ⟶ ( ℝ × ℝ ) ) |
8 | 1 2 7 | hoiprodcl | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐹 ‘ 𝐼 ) ) ‘ 𝑘 ) ) ∈ ( 0 [,) +∞ ) ) |