Description: The Lebesgue measure of a left-closed, right-open interval with real bounds, is real. (Contributed by Glauco Siliprandi, 11-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | volicorecl | |- ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,) B ) ) e. RR ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | volico | |- ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,) B ) ) = if ( A < B , ( B - A ) , 0 ) ) | |
| 2 | simpr | |- ( ( A e. RR /\ B e. RR ) -> B e. RR ) | |
| 3 | simpl | |- ( ( A e. RR /\ B e. RR ) -> A e. RR ) | |
| 4 | 2 3 | resubcld | |- ( ( A e. RR /\ B e. RR ) -> ( B - A ) e. RR ) | 
| 5 | 0red | |- ( ( A e. RR /\ B e. RR ) -> 0 e. RR ) | |
| 6 | 4 5 | ifcld | |- ( ( A e. RR /\ B e. RR ) -> if ( A < B , ( B - A ) , 0 ) e. RR ) | 
| 7 | 1 6 | eqeltrd | |- ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,) B ) ) e. RR ) |