Description: The Lebesgue measure of a left-closed, right-open interval with real bounds, is real. (Contributed by Glauco Siliprandi, 11-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | volicorecl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ∈ ℝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | volico | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) = if ( 𝐴 < 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) ) | |
2 | simpr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ ) | |
3 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℝ ) | |
4 | 2 3 | resubcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
5 | 0red | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 0 ∈ ℝ ) | |
6 | 4 5 | ifcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( 𝐴 < 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) ∈ ℝ ) |
7 | 1 6 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ∈ ℝ ) |