Step |
Hyp |
Ref |
Expression |
1 |
|
df-ico |
⊢ [,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
2 |
1
|
reseq1i |
⊢ ( [,) ↾ ( ℝ × ℝ ) ) = ( ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) ↾ ( ℝ × ℝ ) ) |
3 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
4 |
|
resmpo |
⊢ ( ( ℝ ⊆ ℝ* ∧ ℝ ⊆ ℝ* ) → ( ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) ↾ ( ℝ × ℝ ) ) = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) ) |
5 |
3 3 4
|
mp2an |
⊢ ( ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) ↾ ( ℝ × ℝ ) ) = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
6 |
2 5
|
eqtri |
⊢ ( [,) ↾ ( ℝ × ℝ ) ) = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
7 |
6
|
rneqi |
⊢ ran ( [,) ↾ ( ℝ × ℝ ) ) = ran ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
8 |
7
|
eleq2i |
⊢ ( 𝐴 ∈ ran ( [,) ↾ ( ℝ × ℝ ) ) ↔ 𝐴 ∈ ran ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) ) |
9 |
8
|
biimpi |
⊢ ( 𝐴 ∈ ran ( [,) ↾ ( ℝ × ℝ ) ) → 𝐴 ∈ ran ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) ) |
10 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
11 |
|
xrex |
⊢ ℝ* ∈ V |
12 |
11
|
rabex |
⊢ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ∈ V |
13 |
10 12
|
elrnmpo |
⊢ ( 𝐴 ∈ ran ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝐴 = { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
14 |
9 13
|
sylib |
⊢ ( 𝐴 ∈ ran ( [,) ↾ ( ℝ × ℝ ) ) → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝐴 = { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
15 |
|
simpr |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐴 = { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) → 𝐴 = { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
16 |
3
|
sseli |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) |
17 |
16
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑥 ∈ ℝ* ) |
18 |
3
|
sseli |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℝ* ) |
19 |
18
|
adantl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ* ) |
20 |
|
icoval |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 [,) 𝑦 ) = { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
21 |
17 19 20
|
syl2anc |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 [,) 𝑦 ) = { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
22 |
21
|
eqcomd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } = ( 𝑥 [,) 𝑦 ) ) |
23 |
22
|
adantr |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐴 = { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) → { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } = ( 𝑥 [,) 𝑦 ) ) |
24 |
15 23
|
eqtrd |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐴 = { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) → 𝐴 = ( 𝑥 [,) 𝑦 ) ) |
25 |
24
|
ex |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝐴 = { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } → 𝐴 = ( 𝑥 [,) 𝑦 ) ) ) |
26 |
25
|
adantll |
⊢ ( ( ( 𝐴 ∈ ran ( [,) ↾ ( ℝ × ℝ ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( 𝐴 = { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } → 𝐴 = ( 𝑥 [,) 𝑦 ) ) ) |
27 |
26
|
reximdva |
⊢ ( ( 𝐴 ∈ ran ( [,) ↾ ( ℝ × ℝ ) ) ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑦 ∈ ℝ 𝐴 = { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } → ∃ 𝑦 ∈ ℝ 𝐴 = ( 𝑥 [,) 𝑦 ) ) ) |
28 |
27
|
reximdva |
⊢ ( 𝐴 ∈ ran ( [,) ↾ ( ℝ × ℝ ) ) → ( ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝐴 = { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝐴 = ( 𝑥 [,) 𝑦 ) ) ) |
29 |
14 28
|
mpd |
⊢ ( 𝐴 ∈ ran ( [,) ↾ ( ℝ × ℝ ) ) → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝐴 = ( 𝑥 [,) 𝑦 ) ) |
30 |
|
fveq2 |
⊢ ( 𝐴 = ( 𝑥 [,) 𝑦 ) → ( vol ‘ 𝐴 ) = ( vol ‘ ( 𝑥 [,) 𝑦 ) ) ) |
31 |
30
|
adantl |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐴 = ( 𝑥 [,) 𝑦 ) ) → ( vol ‘ 𝐴 ) = ( vol ‘ ( 𝑥 [,) 𝑦 ) ) ) |
32 |
|
volicorecl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( vol ‘ ( 𝑥 [,) 𝑦 ) ) ∈ ℝ ) |
33 |
32
|
adantr |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐴 = ( 𝑥 [,) 𝑦 ) ) → ( vol ‘ ( 𝑥 [,) 𝑦 ) ) ∈ ℝ ) |
34 |
31 33
|
eqeltrd |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐴 = ( 𝑥 [,) 𝑦 ) ) → ( vol ‘ 𝐴 ) ∈ ℝ ) |
35 |
34
|
ex |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝐴 = ( 𝑥 [,) 𝑦 ) → ( vol ‘ 𝐴 ) ∈ ℝ ) ) |
36 |
35
|
a1i |
⊢ ( 𝐴 ∈ ran ( [,) ↾ ( ℝ × ℝ ) ) → ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝐴 = ( 𝑥 [,) 𝑦 ) → ( vol ‘ 𝐴 ) ∈ ℝ ) ) ) |
37 |
36
|
rexlimdvv |
⊢ ( 𝐴 ∈ ran ( [,) ↾ ( ℝ × ℝ ) ) → ( ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝐴 = ( 𝑥 [,) 𝑦 ) → ( vol ‘ 𝐴 ) ∈ ℝ ) ) |
38 |
29 37
|
mpd |
⊢ ( 𝐴 ∈ ran ( [,) ↾ ( ℝ × ℝ ) ) → ( vol ‘ 𝐴 ) ∈ ℝ ) |
39 |
38
|
2a1d |
⊢ ( 𝐴 ∈ ran ( [,) ↾ ( ℝ × ℝ ) ) → ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝐴 = ( 𝑥 [,) 𝑦 ) → ( vol ‘ 𝐴 ) ∈ ℝ ) ) ) |
40 |
39
|
rexlimdvv |
⊢ ( 𝐴 ∈ ran ( [,) ↾ ( ℝ × ℝ ) ) → ( ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝐴 = ( 𝑥 [,) 𝑦 ) → ( vol ‘ 𝐴 ) ∈ ℝ ) ) |
41 |
29 40
|
mpd |
⊢ ( 𝐴 ∈ ran ( [,) ↾ ( ℝ × ℝ ) ) → ( vol ‘ 𝐴 ) ∈ ℝ ) |