Metamath Proof Explorer


Theorem p1lep2

Description: A real number increasd by 1 is less than or equal to the number increased by 2. (Contributed by Alexander van der Vekens, 17-Sep-2018)

Ref Expression
Assertion p1lep2
|- ( N e. RR -> ( N + 1 ) <_ ( N + 2 ) )

Proof

Step Hyp Ref Expression
1 1red
 |-  ( N e. RR -> 1 e. RR )
2 2re
 |-  2 e. RR
3 2 a1i
 |-  ( N e. RR -> 2 e. RR )
4 id
 |-  ( N e. RR -> N e. RR )
5 1le2
 |-  1 <_ 2
6 5 a1i
 |-  ( N e. RR -> 1 <_ 2 )
7 1 3 4 6 leadd2dd
 |-  ( N e. RR -> ( N + 1 ) <_ ( N + 2 ) )