Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( J e. RR /\ ( L e. RR /\ M e. RR /\ N e. RR ) ) -> J e. RR ) |
2 |
|
resubcl |
|- ( ( L e. RR /\ M e. RR ) -> ( L - M ) e. RR ) |
3 |
2
|
3adant3 |
|- ( ( L e. RR /\ M e. RR /\ N e. RR ) -> ( L - M ) e. RR ) |
4 |
|
simp3 |
|- ( ( L e. RR /\ M e. RR /\ N e. RR ) -> N e. RR ) |
5 |
3 4
|
resubcld |
|- ( ( L e. RR /\ M e. RR /\ N e. RR ) -> ( ( L - M ) - N ) e. RR ) |
6 |
5
|
adantl |
|- ( ( J e. RR /\ ( L e. RR /\ M e. RR /\ N e. RR ) ) -> ( ( L - M ) - N ) e. RR ) |
7 |
|
simpr2 |
|- ( ( J e. RR /\ ( L e. RR /\ M e. RR /\ N e. RR ) ) -> M e. RR ) |
8 |
1 6 7
|
ltadd1d |
|- ( ( J e. RR /\ ( L e. RR /\ M e. RR /\ N e. RR ) ) -> ( J < ( ( L - M ) - N ) <-> ( J + M ) < ( ( ( L - M ) - N ) + M ) ) ) |
9 |
|
recn |
|- ( L e. RR -> L e. CC ) |
10 |
|
recn |
|- ( M e. RR -> M e. CC ) |
11 |
|
recn |
|- ( N e. RR -> N e. CC ) |
12 |
|
nnpcan |
|- ( ( L e. CC /\ M e. CC /\ N e. CC ) -> ( ( ( L - M ) - N ) + M ) = ( L - N ) ) |
13 |
9 10 11 12
|
syl3an |
|- ( ( L e. RR /\ M e. RR /\ N e. RR ) -> ( ( ( L - M ) - N ) + M ) = ( L - N ) ) |
14 |
13
|
adantl |
|- ( ( J e. RR /\ ( L e. RR /\ M e. RR /\ N e. RR ) ) -> ( ( ( L - M ) - N ) + M ) = ( L - N ) ) |
15 |
14
|
breq2d |
|- ( ( J e. RR /\ ( L e. RR /\ M e. RR /\ N e. RR ) ) -> ( ( J + M ) < ( ( ( L - M ) - N ) + M ) <-> ( J + M ) < ( L - N ) ) ) |
16 |
8 15
|
bitrd |
|- ( ( J e. RR /\ ( L e. RR /\ M e. RR /\ N e. RR ) ) -> ( J < ( ( L - M ) - N ) <-> ( J + M ) < ( L - N ) ) ) |