Metamath Proof Explorer


Theorem ltsubsubaddltsub

Description: If the result of subtracting two numbers is greater than a number, the result of adding one of these subtracted numbers to the number is less than the result of subtracting the other subtracted number only. (Contributed by Alexander van der Vekens, 9-Jun-2018)

Ref Expression
Assertion ltsubsubaddltsub
|- ( ( J e. RR /\ ( L e. RR /\ M e. RR /\ N e. RR ) ) -> ( J < ( ( L - M ) - N ) <-> ( J + M ) < ( L - N ) ) )

Proof

Step Hyp Ref Expression
1 simpl
 |-  ( ( J e. RR /\ ( L e. RR /\ M e. RR /\ N e. RR ) ) -> J e. RR )
2 resubcl
 |-  ( ( L e. RR /\ M e. RR ) -> ( L - M ) e. RR )
3 2 3adant3
 |-  ( ( L e. RR /\ M e. RR /\ N e. RR ) -> ( L - M ) e. RR )
4 simp3
 |-  ( ( L e. RR /\ M e. RR /\ N e. RR ) -> N e. RR )
5 3 4 resubcld
 |-  ( ( L e. RR /\ M e. RR /\ N e. RR ) -> ( ( L - M ) - N ) e. RR )
6 5 adantl
 |-  ( ( J e. RR /\ ( L e. RR /\ M e. RR /\ N e. RR ) ) -> ( ( L - M ) - N ) e. RR )
7 simpr2
 |-  ( ( J e. RR /\ ( L e. RR /\ M e. RR /\ N e. RR ) ) -> M e. RR )
8 1 6 7 ltadd1d
 |-  ( ( J e. RR /\ ( L e. RR /\ M e. RR /\ N e. RR ) ) -> ( J < ( ( L - M ) - N ) <-> ( J + M ) < ( ( ( L - M ) - N ) + M ) ) )
9 recn
 |-  ( L e. RR -> L e. CC )
10 recn
 |-  ( M e. RR -> M e. CC )
11 recn
 |-  ( N e. RR -> N e. CC )
12 nnpcan
 |-  ( ( L e. CC /\ M e. CC /\ N e. CC ) -> ( ( ( L - M ) - N ) + M ) = ( L - N ) )
13 9 10 11 12 syl3an
 |-  ( ( L e. RR /\ M e. RR /\ N e. RR ) -> ( ( ( L - M ) - N ) + M ) = ( L - N ) )
14 13 adantl
 |-  ( ( J e. RR /\ ( L e. RR /\ M e. RR /\ N e. RR ) ) -> ( ( ( L - M ) - N ) + M ) = ( L - N ) )
15 14 breq2d
 |-  ( ( J e. RR /\ ( L e. RR /\ M e. RR /\ N e. RR ) ) -> ( ( J + M ) < ( ( ( L - M ) - N ) + M ) <-> ( J + M ) < ( L - N ) ) )
16 8 15 bitrd
 |-  ( ( J e. RR /\ ( L e. RR /\ M e. RR /\ N e. RR ) ) -> ( J < ( ( L - M ) - N ) <-> ( J + M ) < ( L - N ) ) )