| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  |-  ( ( J e. RR /\ ( L e. RR /\ M e. RR /\ N e. RR ) ) -> J e. RR ) | 
						
							| 2 |  | resubcl |  |-  ( ( L e. RR /\ M e. RR ) -> ( L - M ) e. RR ) | 
						
							| 3 | 2 | 3adant3 |  |-  ( ( L e. RR /\ M e. RR /\ N e. RR ) -> ( L - M ) e. RR ) | 
						
							| 4 |  | simp3 |  |-  ( ( L e. RR /\ M e. RR /\ N e. RR ) -> N e. RR ) | 
						
							| 5 | 3 4 | resubcld |  |-  ( ( L e. RR /\ M e. RR /\ N e. RR ) -> ( ( L - M ) - N ) e. RR ) | 
						
							| 6 | 5 | adantl |  |-  ( ( J e. RR /\ ( L e. RR /\ M e. RR /\ N e. RR ) ) -> ( ( L - M ) - N ) e. RR ) | 
						
							| 7 |  | simpr2 |  |-  ( ( J e. RR /\ ( L e. RR /\ M e. RR /\ N e. RR ) ) -> M e. RR ) | 
						
							| 8 | 1 6 7 | ltadd1d |  |-  ( ( J e. RR /\ ( L e. RR /\ M e. RR /\ N e. RR ) ) -> ( J < ( ( L - M ) - N ) <-> ( J + M ) < ( ( ( L - M ) - N ) + M ) ) ) | 
						
							| 9 |  | recn |  |-  ( L e. RR -> L e. CC ) | 
						
							| 10 |  | recn |  |-  ( M e. RR -> M e. CC ) | 
						
							| 11 |  | recn |  |-  ( N e. RR -> N e. CC ) | 
						
							| 12 |  | nnpcan |  |-  ( ( L e. CC /\ M e. CC /\ N e. CC ) -> ( ( ( L - M ) - N ) + M ) = ( L - N ) ) | 
						
							| 13 | 9 10 11 12 | syl3an |  |-  ( ( L e. RR /\ M e. RR /\ N e. RR ) -> ( ( ( L - M ) - N ) + M ) = ( L - N ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( J e. RR /\ ( L e. RR /\ M e. RR /\ N e. RR ) ) -> ( ( ( L - M ) - N ) + M ) = ( L - N ) ) | 
						
							| 15 | 14 | breq2d |  |-  ( ( J e. RR /\ ( L e. RR /\ M e. RR /\ N e. RR ) ) -> ( ( J + M ) < ( ( ( L - M ) - N ) + M ) <-> ( J + M ) < ( L - N ) ) ) | 
						
							| 16 | 8 15 | bitrd |  |-  ( ( J e. RR /\ ( L e. RR /\ M e. RR /\ N e. RR ) ) -> ( J < ( ( L - M ) - N ) <-> ( J + M ) < ( L - N ) ) ) |