Step |
Hyp |
Ref |
Expression |
1 |
|
0red |
|- ( ( J e. RR /\ ( N e. NN0 /\ L e. ZZ ) ) -> 0 e. RR ) |
2 |
|
simpl |
|- ( ( J e. RR /\ ( N e. NN0 /\ L e. ZZ ) ) -> J e. RR ) |
3 |
|
zre |
|- ( L e. ZZ -> L e. RR ) |
4 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
5 |
|
resubcl |
|- ( ( L e. RR /\ N e. RR ) -> ( L - N ) e. RR ) |
6 |
3 4 5
|
syl2anr |
|- ( ( N e. NN0 /\ L e. ZZ ) -> ( L - N ) e. RR ) |
7 |
6
|
adantl |
|- ( ( J e. RR /\ ( N e. NN0 /\ L e. ZZ ) ) -> ( L - N ) e. RR ) |
8 |
|
peano2rem |
|- ( ( L - N ) e. RR -> ( ( L - N ) - 1 ) e. RR ) |
9 |
7 8
|
syl |
|- ( ( J e. RR /\ ( N e. NN0 /\ L e. ZZ ) ) -> ( ( L - N ) - 1 ) e. RR ) |
10 |
|
lelttr |
|- ( ( 0 e. RR /\ J e. RR /\ ( ( L - N ) - 1 ) e. RR ) -> ( ( 0 <_ J /\ J < ( ( L - N ) - 1 ) ) -> 0 < ( ( L - N ) - 1 ) ) ) |
11 |
1 2 9 10
|
syl3anc |
|- ( ( J e. RR /\ ( N e. NN0 /\ L e. ZZ ) ) -> ( ( 0 <_ J /\ J < ( ( L - N ) - 1 ) ) -> 0 < ( ( L - N ) - 1 ) ) ) |
12 |
|
1red |
|- ( ( N e. NN0 /\ L e. ZZ ) -> 1 e. RR ) |
13 |
12 6
|
posdifd |
|- ( ( N e. NN0 /\ L e. ZZ ) -> ( 1 < ( L - N ) <-> 0 < ( ( L - N ) - 1 ) ) ) |
14 |
4
|
adantr |
|- ( ( N e. NN0 /\ L e. ZZ ) -> N e. RR ) |
15 |
3
|
adantl |
|- ( ( N e. NN0 /\ L e. ZZ ) -> L e. RR ) |
16 |
12 14 15
|
ltaddsubd |
|- ( ( N e. NN0 /\ L e. ZZ ) -> ( ( 1 + N ) < L <-> 1 < ( L - N ) ) ) |
17 |
|
elnn0z |
|- ( N e. NN0 <-> ( N e. ZZ /\ 0 <_ N ) ) |
18 |
|
0red |
|- ( ( N e. ZZ /\ L e. ZZ ) -> 0 e. RR ) |
19 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
20 |
19
|
adantr |
|- ( ( N e. ZZ /\ L e. ZZ ) -> N e. RR ) |
21 |
|
1red |
|- ( ( N e. ZZ /\ L e. ZZ ) -> 1 e. RR ) |
22 |
18 20 21
|
leadd2d |
|- ( ( N e. ZZ /\ L e. ZZ ) -> ( 0 <_ N <-> ( 1 + 0 ) <_ ( 1 + N ) ) ) |
23 |
|
1re |
|- 1 e. RR |
24 |
|
0re |
|- 0 e. RR |
25 |
23 24
|
readdcli |
|- ( 1 + 0 ) e. RR |
26 |
25
|
a1i |
|- ( ( N e. ZZ /\ L e. ZZ ) -> ( 1 + 0 ) e. RR ) |
27 |
|
1red |
|- ( N e. ZZ -> 1 e. RR ) |
28 |
27 19
|
readdcld |
|- ( N e. ZZ -> ( 1 + N ) e. RR ) |
29 |
28
|
adantr |
|- ( ( N e. ZZ /\ L e. ZZ ) -> ( 1 + N ) e. RR ) |
30 |
3
|
adantl |
|- ( ( N e. ZZ /\ L e. ZZ ) -> L e. RR ) |
31 |
|
lelttr |
|- ( ( ( 1 + 0 ) e. RR /\ ( 1 + N ) e. RR /\ L e. RR ) -> ( ( ( 1 + 0 ) <_ ( 1 + N ) /\ ( 1 + N ) < L ) -> ( 1 + 0 ) < L ) ) |
32 |
26 29 30 31
|
syl3anc |
|- ( ( N e. ZZ /\ L e. ZZ ) -> ( ( ( 1 + 0 ) <_ ( 1 + N ) /\ ( 1 + N ) < L ) -> ( 1 + 0 ) < L ) ) |
33 |
|
peano2zm |
|- ( L e. ZZ -> ( L - 1 ) e. ZZ ) |
34 |
33
|
adantl |
|- ( ( N e. ZZ /\ L e. ZZ ) -> ( L - 1 ) e. ZZ ) |
35 |
34
|
adantr |
|- ( ( ( N e. ZZ /\ L e. ZZ ) /\ ( 1 + 0 ) < L ) -> ( L - 1 ) e. ZZ ) |
36 |
|
1red |
|- ( L e. ZZ -> 1 e. RR ) |
37 |
|
0red |
|- ( L e. ZZ -> 0 e. RR ) |
38 |
36 37 3
|
ltaddsub2d |
|- ( L e. ZZ -> ( ( 1 + 0 ) < L <-> 0 < ( L - 1 ) ) ) |
39 |
38
|
biimpd |
|- ( L e. ZZ -> ( ( 1 + 0 ) < L -> 0 < ( L - 1 ) ) ) |
40 |
39
|
adantl |
|- ( ( N e. ZZ /\ L e. ZZ ) -> ( ( 1 + 0 ) < L -> 0 < ( L - 1 ) ) ) |
41 |
40
|
imp |
|- ( ( ( N e. ZZ /\ L e. ZZ ) /\ ( 1 + 0 ) < L ) -> 0 < ( L - 1 ) ) |
42 |
|
elnnz |
|- ( ( L - 1 ) e. NN <-> ( ( L - 1 ) e. ZZ /\ 0 < ( L - 1 ) ) ) |
43 |
35 41 42
|
sylanbrc |
|- ( ( ( N e. ZZ /\ L e. ZZ ) /\ ( 1 + 0 ) < L ) -> ( L - 1 ) e. NN ) |
44 |
43
|
ex |
|- ( ( N e. ZZ /\ L e. ZZ ) -> ( ( 1 + 0 ) < L -> ( L - 1 ) e. NN ) ) |
45 |
32 44
|
syld |
|- ( ( N e. ZZ /\ L e. ZZ ) -> ( ( ( 1 + 0 ) <_ ( 1 + N ) /\ ( 1 + N ) < L ) -> ( L - 1 ) e. NN ) ) |
46 |
45
|
expd |
|- ( ( N e. ZZ /\ L e. ZZ ) -> ( ( 1 + 0 ) <_ ( 1 + N ) -> ( ( 1 + N ) < L -> ( L - 1 ) e. NN ) ) ) |
47 |
22 46
|
sylbid |
|- ( ( N e. ZZ /\ L e. ZZ ) -> ( 0 <_ N -> ( ( 1 + N ) < L -> ( L - 1 ) e. NN ) ) ) |
48 |
47
|
impancom |
|- ( ( N e. ZZ /\ 0 <_ N ) -> ( L e. ZZ -> ( ( 1 + N ) < L -> ( L - 1 ) e. NN ) ) ) |
49 |
17 48
|
sylbi |
|- ( N e. NN0 -> ( L e. ZZ -> ( ( 1 + N ) < L -> ( L - 1 ) e. NN ) ) ) |
50 |
49
|
imp |
|- ( ( N e. NN0 /\ L e. ZZ ) -> ( ( 1 + N ) < L -> ( L - 1 ) e. NN ) ) |
51 |
16 50
|
sylbird |
|- ( ( N e. NN0 /\ L e. ZZ ) -> ( 1 < ( L - N ) -> ( L - 1 ) e. NN ) ) |
52 |
13 51
|
sylbird |
|- ( ( N e. NN0 /\ L e. ZZ ) -> ( 0 < ( ( L - N ) - 1 ) -> ( L - 1 ) e. NN ) ) |
53 |
52
|
adantl |
|- ( ( J e. RR /\ ( N e. NN0 /\ L e. ZZ ) ) -> ( 0 < ( ( L - N ) - 1 ) -> ( L - 1 ) e. NN ) ) |
54 |
11 53
|
syld |
|- ( ( J e. RR /\ ( N e. NN0 /\ L e. ZZ ) ) -> ( ( 0 <_ J /\ J < ( ( L - N ) - 1 ) ) -> ( L - 1 ) e. NN ) ) |
55 |
54
|
ex |
|- ( J e. RR -> ( ( N e. NN0 /\ L e. ZZ ) -> ( ( 0 <_ J /\ J < ( ( L - N ) - 1 ) ) -> ( L - 1 ) e. NN ) ) ) |
56 |
55
|
com23 |
|- ( J e. RR -> ( ( 0 <_ J /\ J < ( ( L - N ) - 1 ) ) -> ( ( N e. NN0 /\ L e. ZZ ) -> ( L - 1 ) e. NN ) ) ) |
57 |
56
|
3impib |
|- ( ( J e. RR /\ 0 <_ J /\ J < ( ( L - N ) - 1 ) ) -> ( ( N e. NN0 /\ L e. ZZ ) -> ( L - 1 ) e. NN ) ) |
58 |
57
|
com12 |
|- ( ( N e. NN0 /\ L e. ZZ ) -> ( ( J e. RR /\ 0 <_ J /\ J < ( ( L - N ) - 1 ) ) -> ( L - 1 ) e. NN ) ) |