| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0red |  |-  ( ( J e. RR /\ ( N e. NN0 /\ L e. ZZ ) ) -> 0 e. RR ) | 
						
							| 2 |  | simpl |  |-  ( ( J e. RR /\ ( N e. NN0 /\ L e. ZZ ) ) -> J e. RR ) | 
						
							| 3 |  | zre |  |-  ( L e. ZZ -> L e. RR ) | 
						
							| 4 |  | nn0re |  |-  ( N e. NN0 -> N e. RR ) | 
						
							| 5 |  | resubcl |  |-  ( ( L e. RR /\ N e. RR ) -> ( L - N ) e. RR ) | 
						
							| 6 | 3 4 5 | syl2anr |  |-  ( ( N e. NN0 /\ L e. ZZ ) -> ( L - N ) e. RR ) | 
						
							| 7 | 6 | adantl |  |-  ( ( J e. RR /\ ( N e. NN0 /\ L e. ZZ ) ) -> ( L - N ) e. RR ) | 
						
							| 8 |  | peano2rem |  |-  ( ( L - N ) e. RR -> ( ( L - N ) - 1 ) e. RR ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( J e. RR /\ ( N e. NN0 /\ L e. ZZ ) ) -> ( ( L - N ) - 1 ) e. RR ) | 
						
							| 10 |  | lelttr |  |-  ( ( 0 e. RR /\ J e. RR /\ ( ( L - N ) - 1 ) e. RR ) -> ( ( 0 <_ J /\ J < ( ( L - N ) - 1 ) ) -> 0 < ( ( L - N ) - 1 ) ) ) | 
						
							| 11 | 1 2 9 10 | syl3anc |  |-  ( ( J e. RR /\ ( N e. NN0 /\ L e. ZZ ) ) -> ( ( 0 <_ J /\ J < ( ( L - N ) - 1 ) ) -> 0 < ( ( L - N ) - 1 ) ) ) | 
						
							| 12 |  | 1red |  |-  ( ( N e. NN0 /\ L e. ZZ ) -> 1 e. RR ) | 
						
							| 13 | 12 6 | posdifd |  |-  ( ( N e. NN0 /\ L e. ZZ ) -> ( 1 < ( L - N ) <-> 0 < ( ( L - N ) - 1 ) ) ) | 
						
							| 14 | 4 | adantr |  |-  ( ( N e. NN0 /\ L e. ZZ ) -> N e. RR ) | 
						
							| 15 | 3 | adantl |  |-  ( ( N e. NN0 /\ L e. ZZ ) -> L e. RR ) | 
						
							| 16 | 12 14 15 | ltaddsubd |  |-  ( ( N e. NN0 /\ L e. ZZ ) -> ( ( 1 + N ) < L <-> 1 < ( L - N ) ) ) | 
						
							| 17 |  | elnn0z |  |-  ( N e. NN0 <-> ( N e. ZZ /\ 0 <_ N ) ) | 
						
							| 18 |  | 0red |  |-  ( ( N e. ZZ /\ L e. ZZ ) -> 0 e. RR ) | 
						
							| 19 |  | zre |  |-  ( N e. ZZ -> N e. RR ) | 
						
							| 20 | 19 | adantr |  |-  ( ( N e. ZZ /\ L e. ZZ ) -> N e. RR ) | 
						
							| 21 |  | 1red |  |-  ( ( N e. ZZ /\ L e. ZZ ) -> 1 e. RR ) | 
						
							| 22 | 18 20 21 | leadd2d |  |-  ( ( N e. ZZ /\ L e. ZZ ) -> ( 0 <_ N <-> ( 1 + 0 ) <_ ( 1 + N ) ) ) | 
						
							| 23 |  | 1re |  |-  1 e. RR | 
						
							| 24 |  | 0re |  |-  0 e. RR | 
						
							| 25 | 23 24 | readdcli |  |-  ( 1 + 0 ) e. RR | 
						
							| 26 | 25 | a1i |  |-  ( ( N e. ZZ /\ L e. ZZ ) -> ( 1 + 0 ) e. RR ) | 
						
							| 27 |  | 1red |  |-  ( N e. ZZ -> 1 e. RR ) | 
						
							| 28 | 27 19 | readdcld |  |-  ( N e. ZZ -> ( 1 + N ) e. RR ) | 
						
							| 29 | 28 | adantr |  |-  ( ( N e. ZZ /\ L e. ZZ ) -> ( 1 + N ) e. RR ) | 
						
							| 30 | 3 | adantl |  |-  ( ( N e. ZZ /\ L e. ZZ ) -> L e. RR ) | 
						
							| 31 |  | lelttr |  |-  ( ( ( 1 + 0 ) e. RR /\ ( 1 + N ) e. RR /\ L e. RR ) -> ( ( ( 1 + 0 ) <_ ( 1 + N ) /\ ( 1 + N ) < L ) -> ( 1 + 0 ) < L ) ) | 
						
							| 32 | 26 29 30 31 | syl3anc |  |-  ( ( N e. ZZ /\ L e. ZZ ) -> ( ( ( 1 + 0 ) <_ ( 1 + N ) /\ ( 1 + N ) < L ) -> ( 1 + 0 ) < L ) ) | 
						
							| 33 |  | peano2zm |  |-  ( L e. ZZ -> ( L - 1 ) e. ZZ ) | 
						
							| 34 | 33 | adantl |  |-  ( ( N e. ZZ /\ L e. ZZ ) -> ( L - 1 ) e. ZZ ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ( N e. ZZ /\ L e. ZZ ) /\ ( 1 + 0 ) < L ) -> ( L - 1 ) e. ZZ ) | 
						
							| 36 |  | 1red |  |-  ( L e. ZZ -> 1 e. RR ) | 
						
							| 37 |  | 0red |  |-  ( L e. ZZ -> 0 e. RR ) | 
						
							| 38 | 36 37 3 | ltaddsub2d |  |-  ( L e. ZZ -> ( ( 1 + 0 ) < L <-> 0 < ( L - 1 ) ) ) | 
						
							| 39 | 38 | biimpd |  |-  ( L e. ZZ -> ( ( 1 + 0 ) < L -> 0 < ( L - 1 ) ) ) | 
						
							| 40 | 39 | adantl |  |-  ( ( N e. ZZ /\ L e. ZZ ) -> ( ( 1 + 0 ) < L -> 0 < ( L - 1 ) ) ) | 
						
							| 41 | 40 | imp |  |-  ( ( ( N e. ZZ /\ L e. ZZ ) /\ ( 1 + 0 ) < L ) -> 0 < ( L - 1 ) ) | 
						
							| 42 |  | elnnz |  |-  ( ( L - 1 ) e. NN <-> ( ( L - 1 ) e. ZZ /\ 0 < ( L - 1 ) ) ) | 
						
							| 43 | 35 41 42 | sylanbrc |  |-  ( ( ( N e. ZZ /\ L e. ZZ ) /\ ( 1 + 0 ) < L ) -> ( L - 1 ) e. NN ) | 
						
							| 44 | 43 | ex |  |-  ( ( N e. ZZ /\ L e. ZZ ) -> ( ( 1 + 0 ) < L -> ( L - 1 ) e. NN ) ) | 
						
							| 45 | 32 44 | syld |  |-  ( ( N e. ZZ /\ L e. ZZ ) -> ( ( ( 1 + 0 ) <_ ( 1 + N ) /\ ( 1 + N ) < L ) -> ( L - 1 ) e. NN ) ) | 
						
							| 46 | 45 | expd |  |-  ( ( N e. ZZ /\ L e. ZZ ) -> ( ( 1 + 0 ) <_ ( 1 + N ) -> ( ( 1 + N ) < L -> ( L - 1 ) e. NN ) ) ) | 
						
							| 47 | 22 46 | sylbid |  |-  ( ( N e. ZZ /\ L e. ZZ ) -> ( 0 <_ N -> ( ( 1 + N ) < L -> ( L - 1 ) e. NN ) ) ) | 
						
							| 48 | 47 | impancom |  |-  ( ( N e. ZZ /\ 0 <_ N ) -> ( L e. ZZ -> ( ( 1 + N ) < L -> ( L - 1 ) e. NN ) ) ) | 
						
							| 49 | 17 48 | sylbi |  |-  ( N e. NN0 -> ( L e. ZZ -> ( ( 1 + N ) < L -> ( L - 1 ) e. NN ) ) ) | 
						
							| 50 | 49 | imp |  |-  ( ( N e. NN0 /\ L e. ZZ ) -> ( ( 1 + N ) < L -> ( L - 1 ) e. NN ) ) | 
						
							| 51 | 16 50 | sylbird |  |-  ( ( N e. NN0 /\ L e. ZZ ) -> ( 1 < ( L - N ) -> ( L - 1 ) e. NN ) ) | 
						
							| 52 | 13 51 | sylbird |  |-  ( ( N e. NN0 /\ L e. ZZ ) -> ( 0 < ( ( L - N ) - 1 ) -> ( L - 1 ) e. NN ) ) | 
						
							| 53 | 52 | adantl |  |-  ( ( J e. RR /\ ( N e. NN0 /\ L e. ZZ ) ) -> ( 0 < ( ( L - N ) - 1 ) -> ( L - 1 ) e. NN ) ) | 
						
							| 54 | 11 53 | syld |  |-  ( ( J e. RR /\ ( N e. NN0 /\ L e. ZZ ) ) -> ( ( 0 <_ J /\ J < ( ( L - N ) - 1 ) ) -> ( L - 1 ) e. NN ) ) | 
						
							| 55 | 54 | ex |  |-  ( J e. RR -> ( ( N e. NN0 /\ L e. ZZ ) -> ( ( 0 <_ J /\ J < ( ( L - N ) - 1 ) ) -> ( L - 1 ) e. NN ) ) ) | 
						
							| 56 | 55 | com23 |  |-  ( J e. RR -> ( ( 0 <_ J /\ J < ( ( L - N ) - 1 ) ) -> ( ( N e. NN0 /\ L e. ZZ ) -> ( L - 1 ) e. NN ) ) ) | 
						
							| 57 | 56 | 3impib |  |-  ( ( J e. RR /\ 0 <_ J /\ J < ( ( L - N ) - 1 ) ) -> ( ( N e. NN0 /\ L e. ZZ ) -> ( L - 1 ) e. NN ) ) | 
						
							| 58 | 57 | com12 |  |-  ( ( N e. NN0 /\ L e. ZZ ) -> ( ( J e. RR /\ 0 <_ J /\ J < ( ( L - N ) - 1 ) ) -> ( L - 1 ) e. NN ) ) |