Metamath Proof Explorer


Theorem p1lep2

Description: A real number increasd by 1 is less than or equal to the number increased by 2. (Contributed by Alexander van der Vekens, 17-Sep-2018)

Ref Expression
Assertion p1lep2 ( 𝑁 ∈ ℝ → ( 𝑁 + 1 ) ≤ ( 𝑁 + 2 ) )

Proof

Step Hyp Ref Expression
1 1red ( 𝑁 ∈ ℝ → 1 ∈ ℝ )
2 2re 2 ∈ ℝ
3 2 a1i ( 𝑁 ∈ ℝ → 2 ∈ ℝ )
4 id ( 𝑁 ∈ ℝ → 𝑁 ∈ ℝ )
5 1le2 1 ≤ 2
6 5 a1i ( 𝑁 ∈ ℝ → 1 ≤ 2 )
7 1 3 4 6 leadd2dd ( 𝑁 ∈ ℝ → ( 𝑁 + 1 ) ≤ ( 𝑁 + 2 ) )