| Step |
Hyp |
Ref |
Expression |
| 1 |
|
paddasslem.l |
|- .<_ = ( le ` K ) |
| 2 |
|
paddasslem.j |
|- .\/ = ( join ` K ) |
| 3 |
|
paddasslem.a |
|- A = ( Atoms ` K ) |
| 4 |
|
paddasslem.p |
|- .+ = ( +P ` K ) |
| 5 |
|
simplll |
|- ( ( ( ( K e. HL /\ p = z ) /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ z e. Z ) -> K e. HL ) |
| 6 |
|
simplr3 |
|- ( ( ( ( K e. HL /\ p = z ) /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ z e. Z ) -> Z C_ A ) |
| 7 |
|
simplr1 |
|- ( ( ( ( K e. HL /\ p = z ) /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ z e. Z ) -> X C_ A ) |
| 8 |
|
simplr2 |
|- ( ( ( ( K e. HL /\ p = z ) /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ z e. Z ) -> Y C_ A ) |
| 9 |
3 4
|
paddssat |
|- ( ( K e. HL /\ X C_ A /\ Y C_ A ) -> ( X .+ Y ) C_ A ) |
| 10 |
5 7 8 9
|
syl3anc |
|- ( ( ( ( K e. HL /\ p = z ) /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ z e. Z ) -> ( X .+ Y ) C_ A ) |
| 11 |
3 4
|
sspadd2 |
|- ( ( K e. HL /\ Z C_ A /\ ( X .+ Y ) C_ A ) -> Z C_ ( ( X .+ Y ) .+ Z ) ) |
| 12 |
5 6 10 11
|
syl3anc |
|- ( ( ( ( K e. HL /\ p = z ) /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ z e. Z ) -> Z C_ ( ( X .+ Y ) .+ Z ) ) |
| 13 |
|
simpllr |
|- ( ( ( ( K e. HL /\ p = z ) /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ z e. Z ) -> p = z ) |
| 14 |
|
simpr |
|- ( ( ( ( K e. HL /\ p = z ) /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ z e. Z ) -> z e. Z ) |
| 15 |
13 14
|
eqeltrd |
|- ( ( ( ( K e. HL /\ p = z ) /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ z e. Z ) -> p e. Z ) |
| 16 |
12 15
|
sseldd |
|- ( ( ( ( K e. HL /\ p = z ) /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ z e. Z ) -> p e. ( ( X .+ Y ) .+ Z ) ) |