| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmuz2 |
|- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
| 2 |
|
eqid |
|- { n e. NN0 | ( P ^ n ) || N } = { n e. NN0 | ( P ^ n ) || N } |
| 3 |
|
eqid |
|- sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) |
| 4 |
2 3
|
pcprendvds2 |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. P || ( N / ( P ^ sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) ) ) ) |
| 5 |
1 4
|
sylan |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. P || ( N / ( P ^ sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) ) ) ) |
| 6 |
3
|
pczpre |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P pCnt N ) = sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) ) |
| 7 |
6
|
oveq2d |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ ( P pCnt N ) ) = ( P ^ sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) ) ) |
| 8 |
7
|
oveq2d |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( N / ( P ^ ( P pCnt N ) ) ) = ( N / ( P ^ sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) ) ) ) |
| 9 |
8
|
breq2d |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P || ( N / ( P ^ ( P pCnt N ) ) ) <-> P || ( N / ( P ^ sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) ) ) ) ) |
| 10 |
5 9
|
mtbird |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. P || ( N / ( P ^ ( P pCnt N ) ) ) ) |