Metamath Proof Explorer


Theorem pczndvds2

Description: The remainder after dividing out all factors of P is not divisible by P . (Contributed by Mario Carneiro, 9-Sep-2014)

Ref Expression
Assertion pczndvds2 PNN0¬PNPPpCntN

Proof

Step Hyp Ref Expression
1 prmuz2 PP2
2 eqid n0|PnN=n0|PnN
3 eqid supn0|PnN<=supn0|PnN<
4 2 3 pcprendvds2 P2NN0¬PNPsupn0|PnN<
5 1 4 sylan PNN0¬PNPsupn0|PnN<
6 3 pczpre PNN0PpCntN=supn0|PnN<
7 6 oveq2d PNN0PPpCntN=Psupn0|PnN<
8 7 oveq2d PNN0NPPpCntN=NPsupn0|PnN<
9 8 breq2d PNN0PNPPpCntNPNPsupn0|PnN<
10 5 9 mtbird PNN0¬PNPPpCntN