| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swrdccatind.l |
|- ( ph -> ( # ` A ) = L ) |
| 2 |
|
swrdccatind.w |
|- ( ph -> ( A e. Word V /\ B e. Word V ) ) |
| 3 |
|
pfxccatin12d.m |
|- ( ph -> M e. ( 0 ... L ) ) |
| 4 |
|
pfxccatin12d.n |
|- ( ph -> N e. ( L ... ( L + ( # ` B ) ) ) ) |
| 5 |
1
|
oveq2d |
|- ( ph -> ( 0 ... ( # ` A ) ) = ( 0 ... L ) ) |
| 6 |
5
|
eleq2d |
|- ( ph -> ( M e. ( 0 ... ( # ` A ) ) <-> M e. ( 0 ... L ) ) ) |
| 7 |
1
|
oveq1d |
|- ( ph -> ( ( # ` A ) + ( # ` B ) ) = ( L + ( # ` B ) ) ) |
| 8 |
1 7
|
oveq12d |
|- ( ph -> ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) = ( L ... ( L + ( # ` B ) ) ) ) |
| 9 |
8
|
eleq2d |
|- ( ph -> ( N e. ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) <-> N e. ( L ... ( L + ( # ` B ) ) ) ) ) |
| 10 |
6 9
|
anbi12d |
|- ( ph -> ( ( M e. ( 0 ... ( # ` A ) ) /\ N e. ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) ) <-> ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) ) |
| 11 |
3 4 10
|
mpbir2and |
|- ( ph -> ( M e. ( 0 ... ( # ` A ) ) /\ N e. ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) ) ) |
| 12 |
|
eqid |
|- ( # ` A ) = ( # ` A ) |
| 13 |
12
|
pfxccatin12 |
|- ( ( A e. Word V /\ B e. Word V ) -> ( ( M e. ( 0 ... ( # ` A ) ) /\ N e. ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) = ( ( A substr <. M , ( # ` A ) >. ) ++ ( B prefix ( N - ( # ` A ) ) ) ) ) ) |
| 14 |
2 11 13
|
sylc |
|- ( ph -> ( ( A ++ B ) substr <. M , N >. ) = ( ( A substr <. M , ( # ` A ) >. ) ++ ( B prefix ( N - ( # ` A ) ) ) ) ) |
| 15 |
1
|
opeq2d |
|- ( ph -> <. M , ( # ` A ) >. = <. M , L >. ) |
| 16 |
15
|
oveq2d |
|- ( ph -> ( A substr <. M , ( # ` A ) >. ) = ( A substr <. M , L >. ) ) |
| 17 |
1
|
oveq2d |
|- ( ph -> ( N - ( # ` A ) ) = ( N - L ) ) |
| 18 |
17
|
oveq2d |
|- ( ph -> ( B prefix ( N - ( # ` A ) ) ) = ( B prefix ( N - L ) ) ) |
| 19 |
16 18
|
oveq12d |
|- ( ph -> ( ( A substr <. M , ( # ` A ) >. ) ++ ( B prefix ( N - ( # ` A ) ) ) ) = ( ( A substr <. M , L >. ) ++ ( B prefix ( N - L ) ) ) ) |
| 20 |
14 19
|
eqtrd |
|- ( ph -> ( ( A ++ B ) substr <. M , N >. ) = ( ( A substr <. M , L >. ) ++ ( B prefix ( N - L ) ) ) ) |