Metamath Proof Explorer


Theorem pfxccatin12d

Description: The subword of a concatenation of two words within both of the concatenated words. (Contributed by AV, 31-May-2018) (Revised by AV, 10-May-2020)

Ref Expression
Hypotheses swrdccatind.l φA=L
swrdccatind.w φAWordVBWordV
pfxccatin12d.m φM0L
pfxccatin12d.n φNLL+B
Assertion pfxccatin12d φA++BsubstrMN=AsubstrML++BprefixNL

Proof

Step Hyp Ref Expression
1 swrdccatind.l φA=L
2 swrdccatind.w φAWordVBWordV
3 pfxccatin12d.m φM0L
4 pfxccatin12d.n φNLL+B
5 1 oveq2d φ0A=0L
6 5 eleq2d φM0AM0L
7 1 oveq1d φA+B=L+B
8 1 7 oveq12d φAA+B=LL+B
9 8 eleq2d φNAA+BNLL+B
10 6 9 anbi12d φM0ANAA+BM0LNLL+B
11 3 4 10 mpbir2and φM0ANAA+B
12 eqid A=A
13 12 pfxccatin12 AWordVBWordVM0ANAA+BA++BsubstrMN=AsubstrMA++BprefixNA
14 2 11 13 sylc φA++BsubstrMN=AsubstrMA++BprefixNA
15 1 opeq2d φMA=ML
16 15 oveq2d φAsubstrMA=AsubstrML
17 1 oveq2d φNA=NL
18 17 oveq2d φBprefixNA=BprefixNL
19 16 18 oveq12d φAsubstrMA++BprefixNA=AsubstrML++BprefixNL
20 14 19 eqtrd φA++BsubstrMN=AsubstrML++BprefixNL