Description: Lemma for reuccatpfxs1 . (Contributed by Alexander van der Vekens, 5-Oct-2018) (Revised by AV, 9-May-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | reuccatpfxs1lem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 | |
|
2 | fveqeq2 | |
|
3 | 1 2 | anbi12d | |
4 | 3 | rspcv | |
5 | 4 | adantl | |
6 | simpl | |
|
7 | 6 | adantr | |
8 | simpl | |
|
9 | 8 | adantl | |
10 | simprr | |
|
11 | ccats1pfxeqrex | |
|
12 | 7 9 10 11 | syl3anc | |
13 | s1eq | |
|
14 | 13 | oveq2d | |
15 | 14 | eleq1d | |
16 | eqeq2 | |
|
17 | 15 16 | imbi12d | |
18 | 17 | rspcv | |
19 | eleq1 | |
|
20 | id | |
|
21 | 20 | imp | |
22 | 21 | eqcomd | |
23 | 22 | s1eqd | |
24 | 23 | oveq2d | |
25 | 24 | eqeq2d | |
26 | 25 | biimpd | |
27 | 26 | ex | |
28 | 27 | com13 | |
29 | 19 28 | sylbid | |
30 | 29 | com3l | |
31 | 18 30 | sylan9r | |
32 | 31 | com23 | |
33 | 32 | rexlimdva | |
34 | 33 | adantl | |
35 | 34 | adantr | |
36 | 12 35 | syld | |
37 | 36 | com23 | |
38 | 37 | ex | |
39 | 5 38 | syld | |
40 | 39 | com23 | |
41 | 40 | 3imp | |