Metamath Proof Explorer


Theorem reuccatpfxs1lem

Description: Lemma for reuccatpfxs1 . (Contributed by Alexander van der Vekens, 5-Oct-2018) (Revised by AV, 9-May-2020)

Ref Expression
Assertion reuccatpfxs1lem WWordVUXsVW++⟨“s”⟩XS=sxXxWordVx=W+1W=UprefixWU=W++⟨“S”⟩

Proof

Step Hyp Ref Expression
1 eleq1 x=UxWordVUWordV
2 fveqeq2 x=Ux=W+1U=W+1
3 1 2 anbi12d x=UxWordVx=W+1UWordVU=W+1
4 3 rspcv UXxXxWordVx=W+1UWordVU=W+1
5 4 adantl WWordVUXxXxWordVx=W+1UWordVU=W+1
6 simpl WWordVUXWWordV
7 6 adantr WWordVUXUWordVU=W+1WWordV
8 simpl UWordVU=W+1UWordV
9 8 adantl WWordVUXUWordVU=W+1UWordV
10 simprr WWordVUXUWordVU=W+1U=W+1
11 ccats1pfxeqrex WWordVUWordVU=W+1W=UprefixWuVU=W++⟨“u”⟩
12 7 9 10 11 syl3anc WWordVUXUWordVU=W+1W=UprefixWuVU=W++⟨“u”⟩
13 s1eq s=u⟨“s”⟩=⟨“u”⟩
14 13 oveq2d s=uW++⟨“s”⟩=W++⟨“u”⟩
15 14 eleq1d s=uW++⟨“s”⟩XW++⟨“u”⟩X
16 eqeq2 s=uS=sS=u
17 15 16 imbi12d s=uW++⟨“s”⟩XS=sW++⟨“u”⟩XS=u
18 17 rspcv uVsVW++⟨“s”⟩XS=sW++⟨“u”⟩XS=u
19 eleq1 U=W++⟨“u”⟩UXW++⟨“u”⟩X
20 id W++⟨“u”⟩XS=uW++⟨“u”⟩XS=u
21 20 imp W++⟨“u”⟩XS=uW++⟨“u”⟩XS=u
22 21 eqcomd W++⟨“u”⟩XS=uW++⟨“u”⟩Xu=S
23 22 s1eqd W++⟨“u”⟩XS=uW++⟨“u”⟩X⟨“u”⟩=⟨“S”⟩
24 23 oveq2d W++⟨“u”⟩XS=uW++⟨“u”⟩XW++⟨“u”⟩=W++⟨“S”⟩
25 24 eqeq2d W++⟨“u”⟩XS=uW++⟨“u”⟩XU=W++⟨“u”⟩U=W++⟨“S”⟩
26 25 biimpd W++⟨“u”⟩XS=uW++⟨“u”⟩XU=W++⟨“u”⟩U=W++⟨“S”⟩
27 26 ex W++⟨“u”⟩XS=uW++⟨“u”⟩XU=W++⟨“u”⟩U=W++⟨“S”⟩
28 27 com13 U=W++⟨“u”⟩W++⟨“u”⟩XW++⟨“u”⟩XS=uU=W++⟨“S”⟩
29 19 28 sylbid U=W++⟨“u”⟩UXW++⟨“u”⟩XS=uU=W++⟨“S”⟩
30 29 com3l UXW++⟨“u”⟩XS=uU=W++⟨“u”⟩U=W++⟨“S”⟩
31 18 30 sylan9r UXuVsVW++⟨“s”⟩XS=sU=W++⟨“u”⟩U=W++⟨“S”⟩
32 31 com23 UXuVU=W++⟨“u”⟩sVW++⟨“s”⟩XS=sU=W++⟨“S”⟩
33 32 rexlimdva UXuVU=W++⟨“u”⟩sVW++⟨“s”⟩XS=sU=W++⟨“S”⟩
34 33 adantl WWordVUXuVU=W++⟨“u”⟩sVW++⟨“s”⟩XS=sU=W++⟨“S”⟩
35 34 adantr WWordVUXUWordVU=W+1uVU=W++⟨“u”⟩sVW++⟨“s”⟩XS=sU=W++⟨“S”⟩
36 12 35 syld WWordVUXUWordVU=W+1W=UprefixWsVW++⟨“s”⟩XS=sU=W++⟨“S”⟩
37 36 com23 WWordVUXUWordVU=W+1sVW++⟨“s”⟩XS=sW=UprefixWU=W++⟨“S”⟩
38 37 ex WWordVUXUWordVU=W+1sVW++⟨“s”⟩XS=sW=UprefixWU=W++⟨“S”⟩
39 5 38 syld WWordVUXxXxWordVx=W+1sVW++⟨“s”⟩XS=sW=UprefixWU=W++⟨“S”⟩
40 39 com23 WWordVUXsVW++⟨“s”⟩XS=sxXxWordVx=W+1W=UprefixWU=W++⟨“S”⟩
41 40 3imp WWordVUXsVW++⟨“s”⟩XS=sxXxWordVx=W+1W=UprefixWU=W++⟨“S”⟩