| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleq1 |  |-  ( x = U -> ( x e. Word V <-> U e. Word V ) ) | 
						
							| 2 |  | fveqeq2 |  |-  ( x = U -> ( ( # ` x ) = ( ( # ` W ) + 1 ) <-> ( # ` U ) = ( ( # ` W ) + 1 ) ) ) | 
						
							| 3 | 1 2 | anbi12d |  |-  ( x = U -> ( ( x e. Word V /\ ( # ` x ) = ( ( # ` W ) + 1 ) ) <-> ( U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) ) ) | 
						
							| 4 | 3 | rspcv |  |-  ( U e. X -> ( A. x e. X ( x e. Word V /\ ( # ` x ) = ( ( # ` W ) + 1 ) ) -> ( U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) ) ) | 
						
							| 5 | 4 | adantl |  |-  ( ( W e. Word V /\ U e. X ) -> ( A. x e. X ( x e. Word V /\ ( # ` x ) = ( ( # ` W ) + 1 ) ) -> ( U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) ) ) | 
						
							| 6 |  | simpl |  |-  ( ( W e. Word V /\ U e. X ) -> W e. Word V ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ( W e. Word V /\ U e. X ) /\ ( U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) ) -> W e. Word V ) | 
						
							| 8 |  | simpl |  |-  ( ( U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> U e. Word V ) | 
						
							| 9 | 8 | adantl |  |-  ( ( ( W e. Word V /\ U e. X ) /\ ( U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) ) -> U e. Word V ) | 
						
							| 10 |  | simprr |  |-  ( ( ( W e. Word V /\ U e. X ) /\ ( U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) ) -> ( # ` U ) = ( ( # ` W ) + 1 ) ) | 
						
							| 11 |  | ccats1pfxeqrex |  |-  ( ( W e. Word V /\ U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> ( W = ( U prefix ( # ` W ) ) -> E. u e. V U = ( W ++ <" u "> ) ) ) | 
						
							| 12 | 7 9 10 11 | syl3anc |  |-  ( ( ( W e. Word V /\ U e. X ) /\ ( U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) ) -> ( W = ( U prefix ( # ` W ) ) -> E. u e. V U = ( W ++ <" u "> ) ) ) | 
						
							| 13 |  | s1eq |  |-  ( s = u -> <" s "> = <" u "> ) | 
						
							| 14 | 13 | oveq2d |  |-  ( s = u -> ( W ++ <" s "> ) = ( W ++ <" u "> ) ) | 
						
							| 15 | 14 | eleq1d |  |-  ( s = u -> ( ( W ++ <" s "> ) e. X <-> ( W ++ <" u "> ) e. X ) ) | 
						
							| 16 |  | eqeq2 |  |-  ( s = u -> ( S = s <-> S = u ) ) | 
						
							| 17 | 15 16 | imbi12d |  |-  ( s = u -> ( ( ( W ++ <" s "> ) e. X -> S = s ) <-> ( ( W ++ <" u "> ) e. X -> S = u ) ) ) | 
						
							| 18 | 17 | rspcv |  |-  ( u e. V -> ( A. s e. V ( ( W ++ <" s "> ) e. X -> S = s ) -> ( ( W ++ <" u "> ) e. X -> S = u ) ) ) | 
						
							| 19 |  | eleq1 |  |-  ( U = ( W ++ <" u "> ) -> ( U e. X <-> ( W ++ <" u "> ) e. X ) ) | 
						
							| 20 |  | id |  |-  ( ( ( W ++ <" u "> ) e. X -> S = u ) -> ( ( W ++ <" u "> ) e. X -> S = u ) ) | 
						
							| 21 | 20 | imp |  |-  ( ( ( ( W ++ <" u "> ) e. X -> S = u ) /\ ( W ++ <" u "> ) e. X ) -> S = u ) | 
						
							| 22 | 21 | eqcomd |  |-  ( ( ( ( W ++ <" u "> ) e. X -> S = u ) /\ ( W ++ <" u "> ) e. X ) -> u = S ) | 
						
							| 23 | 22 | s1eqd |  |-  ( ( ( ( W ++ <" u "> ) e. X -> S = u ) /\ ( W ++ <" u "> ) e. X ) -> <" u "> = <" S "> ) | 
						
							| 24 | 23 | oveq2d |  |-  ( ( ( ( W ++ <" u "> ) e. X -> S = u ) /\ ( W ++ <" u "> ) e. X ) -> ( W ++ <" u "> ) = ( W ++ <" S "> ) ) | 
						
							| 25 | 24 | eqeq2d |  |-  ( ( ( ( W ++ <" u "> ) e. X -> S = u ) /\ ( W ++ <" u "> ) e. X ) -> ( U = ( W ++ <" u "> ) <-> U = ( W ++ <" S "> ) ) ) | 
						
							| 26 | 25 | biimpd |  |-  ( ( ( ( W ++ <" u "> ) e. X -> S = u ) /\ ( W ++ <" u "> ) e. X ) -> ( U = ( W ++ <" u "> ) -> U = ( W ++ <" S "> ) ) ) | 
						
							| 27 | 26 | ex |  |-  ( ( ( W ++ <" u "> ) e. X -> S = u ) -> ( ( W ++ <" u "> ) e. X -> ( U = ( W ++ <" u "> ) -> U = ( W ++ <" S "> ) ) ) ) | 
						
							| 28 | 27 | com13 |  |-  ( U = ( W ++ <" u "> ) -> ( ( W ++ <" u "> ) e. X -> ( ( ( W ++ <" u "> ) e. X -> S = u ) -> U = ( W ++ <" S "> ) ) ) ) | 
						
							| 29 | 19 28 | sylbid |  |-  ( U = ( W ++ <" u "> ) -> ( U e. X -> ( ( ( W ++ <" u "> ) e. X -> S = u ) -> U = ( W ++ <" S "> ) ) ) ) | 
						
							| 30 | 29 | com3l |  |-  ( U e. X -> ( ( ( W ++ <" u "> ) e. X -> S = u ) -> ( U = ( W ++ <" u "> ) -> U = ( W ++ <" S "> ) ) ) ) | 
						
							| 31 | 18 30 | sylan9r |  |-  ( ( U e. X /\ u e. V ) -> ( A. s e. V ( ( W ++ <" s "> ) e. X -> S = s ) -> ( U = ( W ++ <" u "> ) -> U = ( W ++ <" S "> ) ) ) ) | 
						
							| 32 | 31 | com23 |  |-  ( ( U e. X /\ u e. V ) -> ( U = ( W ++ <" u "> ) -> ( A. s e. V ( ( W ++ <" s "> ) e. X -> S = s ) -> U = ( W ++ <" S "> ) ) ) ) | 
						
							| 33 | 32 | rexlimdva |  |-  ( U e. X -> ( E. u e. V U = ( W ++ <" u "> ) -> ( A. s e. V ( ( W ++ <" s "> ) e. X -> S = s ) -> U = ( W ++ <" S "> ) ) ) ) | 
						
							| 34 | 33 | adantl |  |-  ( ( W e. Word V /\ U e. X ) -> ( E. u e. V U = ( W ++ <" u "> ) -> ( A. s e. V ( ( W ++ <" s "> ) e. X -> S = s ) -> U = ( W ++ <" S "> ) ) ) ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ( W e. Word V /\ U e. X ) /\ ( U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) ) -> ( E. u e. V U = ( W ++ <" u "> ) -> ( A. s e. V ( ( W ++ <" s "> ) e. X -> S = s ) -> U = ( W ++ <" S "> ) ) ) ) | 
						
							| 36 | 12 35 | syld |  |-  ( ( ( W e. Word V /\ U e. X ) /\ ( U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) ) -> ( W = ( U prefix ( # ` W ) ) -> ( A. s e. V ( ( W ++ <" s "> ) e. X -> S = s ) -> U = ( W ++ <" S "> ) ) ) ) | 
						
							| 37 | 36 | com23 |  |-  ( ( ( W e. Word V /\ U e. X ) /\ ( U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) ) -> ( A. s e. V ( ( W ++ <" s "> ) e. X -> S = s ) -> ( W = ( U prefix ( # ` W ) ) -> U = ( W ++ <" S "> ) ) ) ) | 
						
							| 38 | 37 | ex |  |-  ( ( W e. Word V /\ U e. X ) -> ( ( U e. Word V /\ ( # ` U ) = ( ( # ` W ) + 1 ) ) -> ( A. s e. V ( ( W ++ <" s "> ) e. X -> S = s ) -> ( W = ( U prefix ( # ` W ) ) -> U = ( W ++ <" S "> ) ) ) ) ) | 
						
							| 39 | 5 38 | syld |  |-  ( ( W e. Word V /\ U e. X ) -> ( A. x e. X ( x e. Word V /\ ( # ` x ) = ( ( # ` W ) + 1 ) ) -> ( A. s e. V ( ( W ++ <" s "> ) e. X -> S = s ) -> ( W = ( U prefix ( # ` W ) ) -> U = ( W ++ <" S "> ) ) ) ) ) | 
						
							| 40 | 39 | com23 |  |-  ( ( W e. Word V /\ U e. X ) -> ( A. s e. V ( ( W ++ <" s "> ) e. X -> S = s ) -> ( A. x e. X ( x e. Word V /\ ( # ` x ) = ( ( # ` W ) + 1 ) ) -> ( W = ( U prefix ( # ` W ) ) -> U = ( W ++ <" S "> ) ) ) ) ) | 
						
							| 41 | 40 | 3imp |  |-  ( ( ( W e. Word V /\ U e. X ) /\ A. s e. V ( ( W ++ <" s "> ) e. X -> S = s ) /\ A. x e. X ( x e. Word V /\ ( # ` x ) = ( ( # ` W ) + 1 ) ) ) -> ( W = ( U prefix ( # ` W ) ) -> U = ( W ++ <" S "> ) ) ) |