| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pfxval |  |-  ( ( S e. Word A /\ L e. NN0 ) -> ( S prefix L ) = ( S substr <. 0 , L >. ) ) | 
						
							| 2 |  | simpr |  |-  ( ( S e. _V /\ L e. NN0 ) -> L e. NN0 ) | 
						
							| 3 | 2 | con3i |  |-  ( -. L e. NN0 -> -. ( S e. _V /\ L e. NN0 ) ) | 
						
							| 4 | 3 | adantl |  |-  ( ( S e. Word A /\ -. L e. NN0 ) -> -. ( S e. _V /\ L e. NN0 ) ) | 
						
							| 5 |  | pfxnndmnd |  |-  ( -. ( S e. _V /\ L e. NN0 ) -> ( S prefix L ) = (/) ) | 
						
							| 6 | 4 5 | syl |  |-  ( ( S e. Word A /\ -. L e. NN0 ) -> ( S prefix L ) = (/) ) | 
						
							| 7 |  | simpr |  |-  ( ( 0 e. NN0 /\ L e. NN0 ) -> L e. NN0 ) | 
						
							| 8 | 7 | con3i |  |-  ( -. L e. NN0 -> -. ( 0 e. NN0 /\ L e. NN0 ) ) | 
						
							| 9 |  | swrdnnn0nd |  |-  ( ( S e. Word A /\ -. ( 0 e. NN0 /\ L e. NN0 ) ) -> ( S substr <. 0 , L >. ) = (/) ) | 
						
							| 10 | 8 9 | sylan2 |  |-  ( ( S e. Word A /\ -. L e. NN0 ) -> ( S substr <. 0 , L >. ) = (/) ) | 
						
							| 11 | 6 10 | eqtr4d |  |-  ( ( S e. Word A /\ -. L e. NN0 ) -> ( S prefix L ) = ( S substr <. 0 , L >. ) ) | 
						
							| 12 | 1 11 | pm2.61dan |  |-  ( S e. Word A -> ( S prefix L ) = ( S substr <. 0 , L >. ) ) |